Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data
Abstract
:1. Introduction
2. Data Description and Methodology
2.1. Ground-Based Evaluation Data
2.1.1. Soil Moisture Active Passive Validation Experiments (SMAPVEX16-MB)
2.1.2. COSMOS and SCAN Site Soil Moisture Measurements
2.2. Remote Sensing Imagery and Processing
2.2.1. Sentinel-1 SAR Data
2.2.2. Sentinel-2 Multispectral Data
2.3. Description of the Soil Moisture Retrieval Algorithm
2.3.1. The Backscattering Model for Bare Soil
2.3.2. The Backscattering Model for Vegetation Canopy
2.3.3. Empirical Relationship between Vegetation Water Content and NDVI/NDWI
2.3.4. Sensitivity of Parameters in Water Cloud Model on Backscatters
2.3.5. The Global Optimization Algorithm
2.3.6. Implementation of the Retrieval Algorithm
2.3.7. Averaging Strategies for Determining the Soil Moisture
3. Results
3.1. Evaluating Response of Sentinel-1 to Surface Parameters
3.2. Influence of Vegetation Water Content Index on Soil Moisture Retrieval
3.3. Calibration of Water Cloud Model
3.4. Impact of Ranges of Soil Moisture and Roughness
3.5. Analysis of the Soil Moisture Retrieval Approaches
3.5.1. Soil Moisture Retrieval at the COSMOS Footprint Scale
3.5.2. Soil Moisture Retrieval at the Point Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.A.M.J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Dorigo, W.A.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiová, A.; Sanchis-Dufau, A.D.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global Automated Quality Control of In Situ Soil Moisture Data from the International Soil Moisture Network. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 2013, 476, 460–489. [Google Scholar] [CrossRef]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef] [Green Version]
- Fontanet, M.; Fernàndez-Garcia, D.; Ferrer, F. The value of satellite remote sensing soil moisture data and the DISPATCH algorithm in irrigation fields. Hydrol. Earth Syst. Sci. 2018, 22, 5889–5900. [Google Scholar] [CrossRef] [Green Version]
- Kseneman, M.; Gleich, D.; Cucej, Z. Soil Moisture Estimation Using High-Resolution Spotlight TerraSAR-X Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 686–690. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Bignami, C.; Ticconi, F. Monitoring Soil Moisture in an Agricultural Test Site Using SAR Data: Design and Test of a Pre-Operational Procedure. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2013, 6, 1199–1210. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote Sens. Environ. 2012, 123, 280–297. [Google Scholar] [CrossRef]
- Zhang, D.J.; Zhou, G.Q. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.G.; Li, X.; Han, X.J.; Jin, R. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER). Hydrol. Earth Syst. Sci. 2011, 15, 1415–1426. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Li, X.; Notarnicola, C.; Wang, S.; Wang, W. Uncertainty Quantification of Soil Moisture Estimations Based on a Bayesian Probabilistic Inversion. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3194–3207. [Google Scholar] [CrossRef]
- Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- McNairn, H.; Brisco, B. The application of C-band polarimetric SAR for agriculture: A review. Can. J. Remote Sens. 2004, 30, 525–542. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Wang, S. A Global Sensitivity Analysis of Soil Parameters Associated With Backscattering Using the Advanced Integral Equation Model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5613–5623. [Google Scholar]
- Chen, K.S.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.C.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method Simulations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Srivastava, H.S.; Patel, P.; Navalgund, R.R. How far SAR has fulfilled its expectation for soil moisture retrieval. Microw. Remote Sens. Atmos. Environ. 2006, 6410, 641001. [Google Scholar]
- Du, J.; Shi, J.; Sun, R. The development of HJ SAR soil moisture retrieval algorithm. Int. J. Remote Sens. 2010, 31, 3691–3705. [Google Scholar] [CrossRef]
- Pathe, C.; Wagner, W.; Sabel, D.; Doubkova, M.; Basara, J.B. Using ENVISAT ASAR Global Mode Data for Surface Soil Moisture Retrieval Over Oklahoma, USA. IEEE Trans. Geosci. Remote Sens. 2009, 47, 468–480. [Google Scholar] [CrossRef]
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L.; et al. Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles. IEEE Trans. Geosci. Remote Sens 2018, 57, 520–539. [Google Scholar] [CrossRef]
- Hornacek, M.; Wagner, W.; Sabel, D.; Hong-Linh, T.; Paul, S.; Thomas, H.; Erhard, D.; Marcela, D. Potential for High Resolution Systematic Global Surface Soil Moisture Retrieval via Change Detection Using Sentinel-1. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2012, 5, 1303–1311. [Google Scholar]
- Wagner, W.; Lemoine, G.; Rott, H. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Baghdadi, N.; Aubert, M.; Cerdan, O.; Franchisteguy, L.; Viel, C.; Martin, E.; Zribi, M.; Desprats, J.F. Operational mapping of soil moisture using synthetic aperture radar data: Application to the touch basin (France). Sensors 2007, 7, 2458–2483. [Google Scholar] [CrossRef]
- Bryant, R.; Moran, M.S.; Thoma, D.P.; Collins, C.D.H.; Skirvin, S.; Rahman, M.; Slocum, K.; Starks, P.; Bosch, D.; Dugo, M.P.G. Measuring surface roughness height to parameterize radar backscatter models for retrieval of surface soil moisture. IEEE Geosci. Remote Sens. Lett. 2007, 4, 137–141. [Google Scholar] [CrossRef]
- Merzouki, A.; McNairn, H.; Pacheco, A. Mapping Soil Moisture Using RADARSAT-2 Data and Local Autocorrelation Statistics. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2011, 4, 128–137. [Google Scholar] [CrossRef]
- Van der Velde, R.; Su, Z.B.; van Oevelen, P.; Wen, J.; Ma, Y.M.; Salama, M.S. Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images. Remote Sens. Environ. 2012, 120, 175–187. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Pace, G. A Prototype Software Package to Retrieve Soil Moisture From Sentinel-1 Data by Using a Bayesian Multitemporal Algorithm. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 153–166. [Google Scholar] [CrossRef]
- Notarnicola, C.; Posa, F. Bayesian iterative inversion algorithm applied to soil moisture mapping using ground-based and airborne remote sensing data. SAR Image Anal. Model. Tech. VI 2004, 5236, 116–127. [Google Scholar]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Paloscia, S.; Pampaloni, P.; Pettinato, S.; Santi, E. A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3274–3284. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.Q.; Chen, K.S. Backscattering from a Randomly Rough Dielectric Surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Oh, Y. Quantitative retrieval of soil moisture content and surface roughness from multipolarized radar observations of bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2004, 42, 596–601. [Google Scholar] [CrossRef]
- Dubois, P.C.; vanZyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1340. [Google Scholar] [CrossRef]
- Attema, E.P.W.; Ulaby, F.T. Vegetation Modeled as a Water Cloud. Radio Sci. 1978, 13, 357–364. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Sarabandi, K.; Mcdonald, K.; Whitt, M.; Dobson, M.C. Michigan Microwave Canopy Scattering Model. Int. J. Remote Sens. 1990, 11, 1223–1253. [Google Scholar] [CrossRef]
- Gao, Y.; Walker, J.P.; Allahmoradi, M.; Monerris, A.; Ryu, D.; Jackson, T.J. Optical Sensing of Vegetation Water Content: A Synthesis Study. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 1456–1464. [Google Scholar]
- Jackson, T.J.; Chen, D.Y.; Cosh, M.; Li, F.Q.; Anderson, M.; Walthall, C.; Doriaswamy, P.; Hunt, E.R. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Kim, S.B.; Huang, H.T.; Liao, T.H.; Colliander, A. Estimating Vegetation Water Content and Soil Surface Roughness Using Physical Models of L-Band Radar Scattering for Soil Moisture Retrieval. Remote Sens. 2018, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Oveisgharan, S.; Haddad, Z.; Turk, J.; Rodriguez, E.; Li, L. Soil Moisture and Vegetation Water Content Retrieval Using QuikSCAT Data. Remote Sens. 2018, 10, 636. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Troch, P.A.; DeTroch, F.P.; Nachtergale, L.; Cosyn, B. Soil moisture mapping using ERS-1/SAR in the Zwalm catchment. Remote Sens. Agricult. For. Nat. Resour. 1995, 2585, 112–122. [Google Scholar]
- Quesney, A.; le Hegarat-Mascle, S.; Taconet, O.; Vidal-Madjar, D.; Wigneron, J.P.; Loumagne, C.; Normand, M. Estimation of watershed soil moisture index from ERS/SAR data. Remote Sens. Environ. 2000, 72, 290–303. [Google Scholar] [CrossRef]
- Wang, C.Z.; Qi, J.G.; Moran, S.; Marsett, R. Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery. Remote Sens. Environ. 2004, 90, 178–189. [Google Scholar] [CrossRef]
- Baup, F.; Mougin, E.; de Rosnay, P.; Timouk, F.; Chênerie, I. Surface soil moisture estimation over the AMMA Sahelian site in Mali using ENVISAT/ASAR data. Remote Sens. Environ 2007, 109, 473–481. [Google Scholar] [CrossRef] [Green Version]
- Biftu, G.F.; Gan, T.Y. Retrieving near-surface soil moisture from Radarsat SAR data. Water Resour. Res. 1999, 35, 1569–1579. [Google Scholar] [CrossRef]
- Gherboudj, I.; Magagi, R.; Berg, A.A.; Toth, B. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data. Remote Sens. Environ. 2011, 115, 33–43. [Google Scholar] [CrossRef]
- Bertoldi, G.; della Chiesa, S.; Notarnicola, C.; Pasolli, L.; Niedrist, G.; Tappeiner, U. Estimation of soil moisture patterns in mountain grasslands by means of SAR RADARSAT2 images and hydrological modeling. J. Hydrol. 2014, 516, 245–257. [Google Scholar] [CrossRef]
- Izumi, Y.; Widodo, J.; Kausarian, H.; Demirci, S.; Takahashi, A.; Sumantyo, J.T.S.; Sato, M. Soil Moisture Retrieval by Means of Adaptive Polarimetric Two-Scale Two-Component Model with Fully Polarimetric Alos-2 Data. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018; pp. 4619–4622. [Google Scholar]
- Izumi, Y.; Widodo, J.; Kausarian, H.; Demirci, S.; Takahashi, A.; Razi, P.; Nasucha, M.; Yang, H.; Tetuko, S.S.J. Potential of soil moisture retrieval for tropical peatlands in Indonesia using ALOS-2 L-band full-polarimetric SAR data. Int. J. Remote Sens. 2019, 40, 5938–5956. [Google Scholar] [CrossRef]
- Baghdadi, N.; Aubert, M.; Zribi, M. Use of TerraSAR-X Data to Retrieve Soil Moisture Over Bare Soil Agricultural Fields. IEEE Geosci. Remote Sens. Lett. 2012, 9, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Potin, P.; Rosich, B.; Miranda, N.; Grimont, P.; Shurmer, I.; O’Connell, A.; Krassenburg, M.; Gratadour, J. Copernicus Sentinel-1 Constellation Mission Operations Status. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), Yokohama, Japan, 28 July–2 August 2019; pp. 5385–5388. [Google Scholar]
- Drusch, M.; del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Amazirh, A.; Merlin, O.; Er-Raki, S.; Gao, Q.; Rivalland, V.; Malbeteau, Y.; Khabba, S.; Escorihuela, M.J. Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil. Remote Sens. Environ. 2018, 211, 321–337. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Attarzadeh, R.; Amini, J.; Notarnicola, C.; Greifeneder, F. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale. Remote Sens. 2018, 10, 1285. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.J.; He, B.B.; Li, X.; Zeng, J.Y.; Wang, X.; Wang, Z.L.; Zeng, Y.J.; Su, Z.B. First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau. Remote Sens. 2017, 9, 714. [Google Scholar] [CrossRef] [Green Version]
- Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.E.; Rosolem, R. COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef] [Green Version]
- Franz, T.E.; Zreda, M.; Rosolem, R.; Ferre, T.P.A. Field Validation of a Cosmic-Ray Neutron Sensor Using a Distributed Sensor Network. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef] [Green Version]
- Colliander, A.; Cosh, M.H.; Misra, S.; Jackson, T.J.; Crow, W.T.; Powers, J.; McNairn, H.; Bullock, P.; Berg, A.; Magagi, R.; et al. Comparison of high-resolution airborne soil moisture retrievals to SMAP soil moisture during the SMAP validation experiment 2016 (SMAPVEX16). Remote Sens. Environ. 2019, 227, 137–150. [Google Scholar] [CrossRef]
- Bhuiyan, H.A.K.M.; McNairn, H.; Powers, J.; Friesen, M.; Pacheco, A.; Jackson, T.J.; Cosh, M.H.; Colliander, A.; Berg, A.; Rowlandson, T.; et al. Assessing SMAP Soil Moisture Scaling and Retrieval in the Carman (Canada) Study Site. Vadose Zone J. 2018, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- McNairn, H.; Jackson, T.; Powers, J.; Bélair, S.; Berg, A.; Bullock, P.; Colliander, A.; Cosh, M.H.; Kim, S.B.; Magagi, R. SMAPVEX16 Database Report; pp. 71, 2017. Available online: http://smapvex16-mb.espaceweb.usherbrooke.ca/documents/SMAPVEX16_database_report2020170131.pdf.
- Zreda, M.; Desilets, D.; Ferre, T.P.A.; Scott, R.L. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Owe, M.; van de Griend, A.A. Comparison of soil moisture penetration depths for several bare soils at two microwave frequencies and implications for remote sensing. Water Resour. Res. 1998, 34, 2319–2327. [Google Scholar] [CrossRef]
- Nolan, M.; Fatland, D.R. Penetration depth as a DInSAR observable and proxy for soil moisture. IEEE Trans. Geosci. Remote Sens. 2003, 41, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Montzka, C.; Bogena, H.R.; Zreda, M.; Monerris, A.; Morrison, R.; Muddu, S.; Vereecken, H. Validation of Spaceborne and Modelled Surface Soil Moisture Products with Cosmic-Ray Neutron Probes. Remote Sens. 2017, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Kohli, M.; Schron, M.; Zreda, M.; Schmidt, U.; Dietrich, P.; Zacharias, S. Footprint characteristics revised for field-scale soil moisture monitoring with cosmic-ray neutrons. Water Resour. Res. 2015, 51, 5772–5790. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Foumelis, M.; Blasco, D.J.M.; Desnos, Y.; Engdahl, M.; Fernandez, D.; Veci, L.; Lu, J.; Wong, C. Esa Snap—Stamps Integrated Processing for Sentinel-1 Persistent Scatterer Interferometry. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2018), Valencia, Spain, 22–27 July 2018; pp. 1364–1367. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2Cor: L2A Processor for Users. In Proceedings of the ESA Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; pp. 1–8. [Google Scholar]
- Chen, D.; Huang, J.; Jackson, T.J. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sens. Environ. 2005, 98, 225–236. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Sorooshian, S.; Gupta, V.K. Optimal Use of the Sce-Ua Global Optimization Method for Calibrating Watershed Models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Duan, Q.Y.; Gupta, V.K.; Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 1993, 76, 501–521. [Google Scholar] [CrossRef]
- Duan, Q.; Sorooshian, S.; Gupta, V. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res. 1992, 28, 1015–1031. [Google Scholar] [CrossRef]
- Zribi, M.; Gorrab, A.; Baghdadi, N. A new soil roughness parameter for the modelling of radar backscattering over bare soil. Remote Sens. Environ. 2014, 152, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1348–1355. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; el Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Vrugt, J.A.; Gupta, H.V.; Bouten, W.; Sorooshian, S. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour. Res. 2003, 39, 1201. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.; Gao, X.; Sorooshian, S. Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems: Application to the calibration of the Sacramento soil moisture accounting model. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Gallagher, K.; Sambridge, M.; Drijkoningen, G. Genetic Algorithms—An Evolution from Monte-Carlo Methods for Strongly Nonlinear Geophysical Optimization Problems. Geophys. Res. Lett. 1991, 18, 2177–2180. [Google Scholar] [CrossRef]
- Sahr, J.D.; Grannan, E.R. Simulated Annealing Searches for Long Binary Phase Codes with Application to Radar Remote-Sensing. Radio Sci. 1993, 28, 1053–1055. [Google Scholar] [CrossRef]
- Hararuk, O.; Xia, J.Y.; Luo, Y.Q. Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method. J. Geophys. Res. Biogeosci. 2014, 119, 403–417. [Google Scholar] [CrossRef]
- Li, D.Z.; Jin, R.; Zhou, J.; Kang, J. Analysis and Reduction of the Uncertainties in Soil Moisture Estimation With the L-MEB Model Using EFAST and Ensemble Retrieval. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1337–1341. [Google Scholar]
- Ma, C.; Li, X.; Wang, J.; Wang, C.; Duan, Q.; Wang, W. A Comprehensive Evaluation of Microwave Emissivity and Brightness Temperature Sensitivities to Soil Parameters Using Qualitative and Quantitative Sensitivity Analyses. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1025–1038. [Google Scholar] [CrossRef]
- McNairn, H.; Jackson, T.J.; Wiseman, G.; Belair, S.; Berg, A.; Bullock, P.; Colliander, A.; Cosh, M.H.; Kim, S.B.; Magagi, R.; et al. The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms. IEEE Trans. Geosci. Remote Sens 2015, 53, 2784–2801. [Google Scholar] [CrossRef]
- Hornbuckle, B.; Walker, V.; Eichinger, B.; Wallace, V.; Yildirim, E. Soil Surface Roughness Observed during Smapvex16-Ia and Its Potential Consequences for Smos and Smap. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017), Fort Worth, TX, USA, 23–28 July 2017; pp. 2027–2030. [Google Scholar]
- Xu, T.; White, L.; Hui, D.; Luo, Y. Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Chen, K.S. The Discrepancy between Backscattering Model Simulations and Radar Observations Caused by Scaling Issues: An Uncertainty Analysis. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5356–5372. [Google Scholar] [CrossRef]
- FUlaby, T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. From Theory to Application; Artech House: Norwood, MA, USA, 1986. [Google Scholar]
- Beven, K. A manifesto for the equifinality thesis. J Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Schron, M.; Kohli, M.; Scheiffele, L.; Iwema, J.; Bogena, H.R.; Lv, L.; Martini, E.; Baroni, G.; Rosolem, R.; Weimar, J.; et al. Improving calibration and validation of cosmic-ray neutron sensors in the light of spatial sensitivity. Hydrol. Earth Syst. Sci 2017, 21, 5009–5030. [Google Scholar] [CrossRef] [Green Version]
- Franz, T.E.; Zreda, M.; Ferre, T.P.A.; Rosolem, R.; Zweck, C.; Stillman, S.; Zeng, X.; Shuttleworth, W.J. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Holtgrave, A.K.; Forster, M.; Greifeneder, F.; Notarnicola, C.; Kleinschmit, B. Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG-J. Photogramm. Remote Sens. Geoinform. Sci 2018, 86, 85–101. [Google Scholar] [CrossRef]
- Ma, X.S.; Wu, P.H.; Wu, Y.L.; Shen, H.F. A Review on Recent Developments in Fully Polarimetric SAR Image Despeckling. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 743–758. [Google Scholar] [CrossRef]
- Brown, S.C.M.; Quegan, S.; Morrison, K.; Bennett, J.C.; Cookmartin, G. High-resolution measurements of scattering in wheat canopies—Implications for crop parameter retrieval. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1602–1610. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.; Cookmartin, G.; Morrison, K.; McDonald, A.J.; Quegan, S.; Anderson, C.; Cordey, R.; Dampney, P. Wheat scattering mechanisms observed in near-field radar imagery compared with results from a radiative transfer model. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment (IGARSS 2000), Honolulu, HI, USA, 24–28 July 2000; pp. 2933–2935. [Google Scholar]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Verbesselt, J.; Somers, B.; van Aardt, J.; Jonckheere, I.; Coppin, P. Monitoning herbaceous biomass and water content with SPOT VEGETATION time-series to improve fire risk assessment in savanna ecosystems. Remote Sens. Environ. 2006, 101, 399–414. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Hunt, E.R.; Goins, L.D.; Ustin, S.L.; Vanderbilt, V.C.; Jackson, T.J. Vegetation water content during SMEX04 from ground data and Landsat 5 Thematic Mapper imagery. Remote Sens. Environ. 2008, 112, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.C.; Walker, J.P.; Gao, Y.; Wu, X.L.; Monerris, A. Estimation of Vegetation Water Content From the Radar Vegetation Index at L-Band. IEEE Trans. Geosci. Remote Sens. 2016, 54, 981–989. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Lee, H.; Hong, S. Radar Vegetation Index for Estimating the Vegetation Water Content of Rice and Soybean. IEEE Geosci. Remote Sens. Lett. 2012, 9, 564–568. [Google Scholar]
- Joseph, A.T.; van der Velder, R.; O’Neill, P.E.; Lang, R.; Gish, T. Effects of corn on C- and L-band radar backscatter: A correction method for soil moisture retrieval. Remote Sens. Environ. 2010, 114, 2417–2430. [Google Scholar] [CrossRef]
Site | Location | Temporal Coverage | Description |
---|---|---|---|
COSMOS029 | 96.4412 W, 41.1799 N | 2011/04–2019/05 | Flat; soybean-maize; silty to heavy clay soils |
COSMOS100 | 97.4586 W, 40.8899 N | 2014/05–2019/03 | Fairly flat; rain-fed; half maize/soybean; silty loam |
COSMOS099 | 97.4587 W, 40.9338 N | 2014/05–2019/05 | Flat center-pivot; irrigated; soybean; silty loam soil |
COSMOS090 | 97.4875 W, 40.9482 N | 2014/04–2019/05 | Flat; irrigated maize; quarter section center-pivot |
COSMOS102 | 97.9470 W, 41.2688 N | 2014/05–2019/05 | Flat; silty sand soils; small creek in northeast footprint |
SCAN Site (RogersFarm #1) | 96.4670 W, 40.8500 N | 2017/10–2018/07 | Flat; mixed crop-grass; loam soil |
SMAPVEX16-MB | 98.1 W–97.7 W, 49.4 N–49.7 N | 2016/06–2016/07 | Fairly flat, mixed annual cropping crops, diverse soil texture |
NDVI/NDWI | Ranges of x (-) | N | Formulation | R2 |
---|---|---|---|---|
NDVI_833-665 | 0.226–0.943 | 122 | y = 2.3066x3.0922 | 0.85 |
NDVI_865-665 | 0.260–0.943 | 122 | y = 2.3748x3.3628 | 0.85 |
NDWI_833-1614 | −10.324–0.571 | 122 | y = 0.2342e4.6449x | 0.84 |
NDWI_865-1614 | −0.295–0.593 | 122 | y = 0.2091e4.7637x | 0.84 |
NDWI_833-2202 | −0.223–0.775 | 122 | y = 0.1270e3.7679x | 0.84 |
NDWI_865-2202 | −0.192–0.783 | 122 | y = 0.1136e3.8872x | 0.84 |
VWC Scheme | Error Metrics | ||||
---|---|---|---|---|---|
R2 | Bias | MAE | RMSE | ubRMSE | |
NDVI_833-665 | 0.306 | 0.019 | 0.075 | 0.089 | 0.085 |
NDVI_865-665 | 0.319 | 0.022 | 0.075 | 0.088 | 0.082 |
NDWI_833-1614 | 0.471 | 0.007 | 0.065 | 0.077 | 0.074 |
NDWI_865-1614 | 0.542 | 0.016 | 0.060 | 0.072 | 0.067 |
NDWI_833-2202 | 0.388 | 0.006 | 0.079 | 0.092 | 0.091 |
NDWI_865-2202 | 0.398 | 0.008 | 0.075 | 0.088 | 0.087 |
COSMOS029 | |||||
Land uses | R2 | Bias | MAE | RMSE | ubRMSE |
All land uses | 0.472 | −0.01 | 0.069 | 0.078 | 0.076 |
Rangeland | 0.401 | −0.02 | 0.078 | 0.086 | 0.083 |
Winter wheat | 0.44 | −0.03 | 0.078 | 0.088 | 0.082 |
Pasture | 0.448 | −0.02 | 0.076 | 0.084 | 0.08 |
COSMOS090 | |||||
Land uses | R2 | Bias | MAE | RMSE | ubRMSE |
All land uses | 0.445 | 0.025 | 0.064 | 0.078 | 0.074 |
Rangeland | 0.31 | 0.017 | 0.071 | 0.085 | 0.083 |
Winter wheat | 0.298 | 0.029 | 0.077 | 0.09 | 0.085 |
Pasture | 0.278 | 0.021 | 0.071 | 0.084 | 0.082 |
COSMOS099 | |||||
Land uses | R2 | Bias | MAE | RMSE | ubRMSE |
All land uses | 0.597 | 0.008 | 0.053 | 0.065 | 0.065 |
Rangeland | 0.475 | 0.003 | 0.062 | 0.073 | 0.073 |
Winter wheat | 0.491 | 0.003 | 0.061 | 0.074 | 0.074 |
Pasture | 0.582 | 0.005 | 0.058 | 0.07 | 0.07 |
COSMOS102 | |||||
Land uses | R2 | Bias | MAE | RMSE | ubRMSE |
All land uses | 0.655 | 0.039 | 0.053 | 0.065 | 0.052 |
Rangeland | 0.238 | −0.01 | 0.069 | 0.087 | 0.086 |
Winter wheat | 0.498 | 0.031 | 0.064 | 0.076 | 0.069 |
Pasture | 0.475 | 0.02 | 0.058 | 0.072 | 0.069 |
Range | R2 | Bias | MAE | RMSE | ubRMSE |
---|---|---|---|---|---|
SM: 0.15–0.45 RMSH: 0.25–0.85 | 0.597 | 0.008 | 0.053 | 0.065 | 0.065 |
SM: 0.20–0.40 RMSH: 0.30–0.80 | 0.496 | 0.003 | 0.042 | 0.051 | 0.051 |
SM: 0.05–0.50 RMSH: 0.05–1.05 | 0.354 | 0 | 0.1 | 0.115 | 0.115 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Li, X.; McCabe, M.F. Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2020, 12, 2303. https://doi.org/10.3390/rs12142303
Ma C, Li X, McCabe MF. Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data. Remote Sensing. 2020; 12(14):2303. https://doi.org/10.3390/rs12142303
Chicago/Turabian StyleMa, Chunfeng, Xin Li, and Matthew F. McCabe. 2020. "Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data" Remote Sensing 12, no. 14: 2303. https://doi.org/10.3390/rs12142303