Triple-Frequency GPS Un-Differenced and Uncombined PPP Ambiguity Resolution Using Observable-Specific Satellite Signal Biases
Abstract
:1. Introduction
2. Methods
2.1. Triple-Frequency UDUC-PPP AR Model
2.2. Observable-Specific Satellite Code Biases
2.3. Observable-Specific Satellite Phase Biases
2.4. Observable-Specific Satellite Bias Corrections for UDUC-PPP AR
3. Experiment and Results
3.1. Data and UDUC-PPP AR Strategy
3.2. Performance of UDUC-PPP AR with Observable-Specific SCB
3.3. Performance of UDUC-PPP AR with Observable-Specific IFCB
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Basic Format of SINEX_BIAS File for UDUC-PPP AR
References
- Zrinjski, M.; Barković, Đ.; Matika, K. Razvoj i modernizacija GNSS-a. Geodetski. List. 2019, 73, 45–65. [Google Scholar]
- Geng, J.; Bock, Y. Triple-frequency GPS precise point positioning with rapid ambiguity resolution. J. Geod. 2013, 87, 449–460. [Google Scholar] [CrossRef]
- Gu, S.; Lou, Y.; Shi, C.; Liu, J. BeiDou phase bias estimation and its application in precise point positioning with triple-frequency observable. J. Geod. 2015, 89, 979–992. [Google Scholar] [CrossRef]
- Li, P.; Zhang, X.; Ge, M.; Schuh, H. Three-frequency BDS precise point positioning ambiguity resolution based on raw observables. J. Geod. 2018, 92, 1357–1369. [Google Scholar] [CrossRef] [Green Version]
- Innovation: Instantaneous Centimeter-Level Multi-Frequency Precise Point Positioning. Available online: https://www.gpsworld.com/innovation-instantaneous-centimeter-level-multi-frequency-precise-point-positioning/ (accessed on 10 July 2020).
- Liu, G.; Zhang, X.; Li, P. Improving the performance of Galileo uncombined precise point positioning ambiguity resolution using triple-frequency observations. Remote Sens. 2019, 11, 341. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, X.; Liu, G.; Xie, W.; Guo, F.; Yuan, Y.; Zhang, K.; Feng, G. Triple-frequency PPP ambiguity resolution with multi-constellation GNSS: BDS and Galileo. J. Geod. 2019, 93, 1105–1122. [Google Scholar] [CrossRef]
- Geng, J.; Guo, J.; Meng, X.; Gao, K. Speeding up PPP ambiguity resolution using triple-frequency GPS/BeiDou/Galileo/QZSS data. J. Geod. 2020, 94. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Gendt, G.; Rothacher, M.; Shi, C.; Liu, J. Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 2008, 82, 389–399. [Google Scholar] [CrossRef]
- Schaer, S. Differential code biases (DCB) in GNSS analysis. In Proceedings of the IGS Workshop, Miami Beach, FL, USA, 2–6 June 2008. [Google Scholar]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P. Differential Code Bias estimation using multi-GNSS observations and global ionosphere maps. Navigation 2014, 61, 191–201. [Google Scholar] [CrossRef]
- Wang, N.; Yuan, Y.; Li, Z.; Montenbruck, O. Determination of Differential Code Biases with multi-GNSS observations. J. Geod. 2016, 90, 209–228. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A. Code biases in multi-GNSS point positioning. In Proceedings of the ION ITM 2013, San Diego, CA, USA, 28–30 January 2013. [Google Scholar]
- Schaer, S. SINEX_BIAS-Solution (Software/technique) Independent Exchange Format for GNSS Biases Version 1.00. In Proceedings of the IGS Workshop on GNSS Biases, Bern, Switzerland, 5–6 November 2015. [Google Scholar]
- Villiger, A.; Schaer, S.; Dach, R.; Prange, L.; Sušnik, A.; Jäggi, A. Determination of GNSS pseudo-absolute code biases and their long-term combination. J. Geod. 2019, 93, 1487–1500. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hauschild, A.; Steigenberger, P.; Langley, R.B. Three’s the challenge: A close look a GPS SVN62 triple-frequency signal combinations finds carrier-phase variations on the new L5. GPS World 2010, 21, 8–19. [Google Scholar]
- Guo, J.; Geng, J. GPS satellite clock determination in case of inter-frequency clock biases for triple-frequency precise point positioning. J. Geod. 2018, 92, 1133–1142. [Google Scholar] [CrossRef]
- Zhang, B.; Teunissen, P.J.G.; Odijk, D. A novel un-differenced PPP-RTK concept. J. Navig. 2011, 64, S180–S191. [Google Scholar] [CrossRef] [Green Version]
- Odijk, D.; Zhang, B.; Khodabandeh, A.; Odolinski, R.; Teunissen, P.J.G. On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. J. Geod. 2016, 90, 15–44. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Y.; Yuan, Y. PPP-RTK based on undifferenced and uncombined observations: Theoretical and practical aspects. J. Geod. 2019, 93, 1011–1024. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Li, P. Estimating multi-frequency satellite phase biases of BeiDou using maximal decorrelated linear ambiguity combinations. GPS Solut. 2019, 23, 42. [Google Scholar] [CrossRef]
- Montenbruck, O.; Hugentobler, U.; Dach, R.; Steigenberger, P.; Hauschild, A. Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solut. 2011, 16, 303–313. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, X.; Guo, F.; Liu, J. GPS inter-frequency clock bias estimation for both uncombined and ionospheric-free combined triple-frequency precise point positioning. J. Geod. 2019, 93, 473–487. [Google Scholar] [CrossRef]
- Zhao, L.; Ye, S.; Song, J. Handling the satellite inter-frequency biases in triple-frequency observations. Adv. Space. Res. 2017, 59, 2048–2057. [Google Scholar] [CrossRef]
- Gong, X.; Gu, S.; Lou, Y.; Zheng, F.; Yang, X.; Wang, Z.; Liu, J. Research on empirical correction models of GPS Block IIF and BDS satellite inter-frequency clock bias. J. Geod. 2020, 94. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, X.; Wang, J. Timing group delay and differential code bias corrections for BeiDou positioning. J. Geod. 2015, 89, 427–445. [Google Scholar] [CrossRef]
- Laurichesse, D. Carrier-phase ambiguity resolution: Handling the biases for improved triple-frequency PPP convergence. GPS World. 2015, 26, 49–54. [Google Scholar]
- Li, H.; Li, B.; Xiao, G.; Wang, J.; Xu, T. Improved method for estimating the inter-frequency satellite clock bias of triple-frequency GPS. GPS Solut. 2016, 20, 751–760. [Google Scholar] [CrossRef]
- Teunissen, P.J.G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation. J. Geod. 1995, 70, 65–82. [Google Scholar] [CrossRef]
- De Jonge, P.; Teunissen, P.J.G.; Jonkman, N.; Joosten, P. The distributional dependence of the range on triple frequency GPS ambiguity resolution. In Proceedings of the National Technical Meeting of the Institute of Navigation, Anaheim, CA, USA, 26–28 January 2000; Volume 5, pp. 605–612. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions; IERS technical note No. 36; Publisher of the Federal Agency for Cartography and Geodesy: Frankfurt am Main, Germany, 2010; p. 179. [Google Scholar]
- Wu, J.T.; Wu, S.C.; Hajj, G.A.; Bertiger, W.I.; Lichten, S.M. Effects of antenna orientation on GPS carrier phase. Manuscr. Geod. 1993, 18, 91–98. [Google Scholar]
- Li, P.; Zhang, X.; Ren, X.; Zuo, X.; Pan, Y. Generating GPS satellite fractional cycle bias for ambiguity-fixed precise point positioning. GPS Solut. 2016, 20, 771–782. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, X.; Li, P.; Ma, F.; Pan, L. Multi-GNSS fractional cycle bias products generation for GNSS ambiguity-fixed PPP at Wuhan University. GPS Solut. 2020. [Google Scholar] [CrossRef]
Observation Format | Code Bias Type | DCB Type | Institution |
---|---|---|---|
GPS RINEX 2 | Inter-frequency code bias | P1-P2 | CODE |
Intra-frequency code bias | P1-C1 | ||
P2-C2 | |||
GPS RINEX 3 | Inter-frequency code bias | C1W-C2W | IGG/DLR/CODE |
C1C-C1W | |||
C1C-C2W | |||
C1C-C5Q | |||
C1C-C5X | |||
Intra-frequency code bias | C2W-C2L | ||
C2W-C2S | |||
C2W-C2X |
Station | Receiver Type | Tri Sat Num (Epoch) | Sat Num (Epoch) | Total (Tri) Sat Num (Available) |
---|---|---|---|---|
AJAC | LEICA GR25 | 5-6 | 9-11 | 31(12) |
BOR1 | TRIMBLE NETR9 | 5-7 | 10-13 | 31(12) |
BRUX | SEPT POLARX4TR | 5-7 | 12-13 | 31(12) |
GOP6 | LEICA GRX1200+GNSS | 5-6 | 8-12 | 31(12) |
GRAC | LEICA GR25 | 5-6 | 9-12 | 31(12) |
KOS1 | SEPT POLARX4 | 5-7 | 10-13 | 31(12) |
MATG | LEICA GRX1200+GNSS | 5-6 | 9-16 | 31(12) |
TLSG | SEPT POLARX4TR | 5-6 | 9-14 | 31(12) |
WARN | JAVAD TRE_G3TH | 5-7 | 10-14 | 31(12) |
WTZR | LEICA GR25 | 5-6 | 9-12 | 31(12) |
WTZS | SEPT POLARX4TR | 5-6 | 9-12 | 31(12) |
WTZZ | TRE_G3TH | 5-6 | 9-12 | 31(12) |
Item | Strategy |
---|---|
Estimator | Sequential least square estimator |
Observations | Original carrier-phase and pseudo-range observations |
Signal selection | GPS: L1/L2/L5 |
Satellite selection | Block IIF satellite with triple-frequency signals |
Sampling rate | 30 s |
Elevation cutoff | 15° |
Observations weight | Elevation-dependent weight |
Ionospheric delay | Estimated as random walk process |
Tropospheric delay | Dry component: corrected with the Saastamoinen model |
Wet component: estimated as random-walk process, GMF mapping function | |
Receiver clock | Estimated as white noise |
Station displacement | Corrected by IERS Convention 2010, including Solid Earth tide, |
pole tide and ocean tide loading [31] | |
Satellite PCO/PCV | Corrected using IGS14 ANTEX file |
Phase-windup effect | Corrected [32] |
Relativistic effect | Applied |
Station coordinate | Static: estimated as constants, kinematic: estimated as white noise |
Observable-specific SCB | Type: C1C or C1W/C2W/C5X |
Observable-specific SPB | Type: L1C or L1W/L2W/L5X |
Observable-specific IFCB | Type: L5X |
Item/Reference | TTFF (min) | Sat Num (Epoch) | Data | Signal Selection |
---|---|---|---|---|
Dual-frequency BDS-2 PPP AR/[4] | 31 | 6-7 | IGS MGEX | B1/B2 |
Triple-frequency BDS-2 PPP AR/[4] | 27.9 | 6-7 | IGS MGEX | B1/B2/B3 |
Dual-frequency Galileo PPP AR/ [6] | 20 | 5-8 | IGS MGEX | E1/E5a |
Triple-frequency Galileo PPP AR/[6] | 16 | 5-8 | IGS MGEX | E1/E5a/E5b |
Dual-frequency GPS PPP AR/[33]/[34] | 22.6/20.8 | 9-14 | IGS MEGX | L1/L2 |
Triple-frequency GPS PPP AR | 15.6 | 5-7 | IGS MEGX | L1/L2/L5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Guo, F.; Wang, J.; Du, M.; Qu, L. Triple-Frequency GPS Un-Differenced and Uncombined PPP Ambiguity Resolution Using Observable-Specific Satellite Signal Biases. Remote Sens. 2020, 12, 2310. https://doi.org/10.3390/rs12142310
Liu G, Guo F, Wang J, Du M, Qu L. Triple-Frequency GPS Un-Differenced and Uncombined PPP Ambiguity Resolution Using Observable-Specific Satellite Signal Biases. Remote Sensing. 2020; 12(14):2310. https://doi.org/10.3390/rs12142310
Chicago/Turabian StyleLiu, Gen, Fei Guo, Jian Wang, Mingyi Du, and Lizhong Qu. 2020. "Triple-Frequency GPS Un-Differenced and Uncombined PPP Ambiguity Resolution Using Observable-Specific Satellite Signal Biases" Remote Sensing 12, no. 14: 2310. https://doi.org/10.3390/rs12142310
APA StyleLiu, G., Guo, F., Wang, J., Du, M., & Qu, L. (2020). Triple-Frequency GPS Un-Differenced and Uncombined PPP Ambiguity Resolution Using Observable-Specific Satellite Signal Biases. Remote Sensing, 12(14), 2310. https://doi.org/10.3390/rs12142310