Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring
Abstract
:1. Introduction
2. Data
2.1. The Land Change Monitoring, Assessment, and Projection (LCMAP) Products
2.2. The USGS National Land Cover Database (NLCD)
3. Method
3.1. Index-Based Products Evaluation
3.2. Comparing with Neighbor Tiles
3.3. Sensitivity Test Using Simulated Data
- Randomly erroneous pixels in one year
- Randomly erroneous pixels in all years
3.4. Implementation to the Production
4. Results and Discussion
4.1. Sensitivity Test Result Using Simulated Data
4.2. Quality Assessment for the Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Statement
References
- Rindfuss, R.R.; Walsh, S.J.; Turner Ii, B.L.; Fox, J.; Mishra, V. Developing a science of land change: Challenges and methodological issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar]
- Achard, F.; Eva, H.D.; Mayaux, P.; Stibig, H.J.; Belward, A. Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Glob. Biogeochem. Cycles 2004, 18, GB2008. [Google Scholar]
- Houghton, R.A.; House, J.I.; Pongratz, J.; van der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar]
- Tan, Z.; Liu, S.; Sohl, T.L.; Wu, Y.; Young, C.J. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States. Proc. Natl. Acad. Sci. USA 2015, 112, 12723–12728. [Google Scholar]
- Wu, Y.; Liu, S.; Tan, Z. Quantitative attribution of major driving forces on soil organic carbon dynamics. J. Adv. Model. Earth Syst. 2015, 7, 21–34. [Google Scholar]
- Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sens. Environ. 2016, 185, 171–185. [Google Scholar]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar]
- Kennedy, R.E.; Andrefouet, S.; Cohen, W.B.; Gomez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar]
- Masek, J.G.; Huang, C.; Wolfe, R.; Cohen, W.; Hall, F.; Kutler, J.; Nelson, P. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar]
- Liu, H.; Zhan, Q.; Gao, S.; Yang, C. Seasonal variation of the spatially non-stationary association between land surface temperature and urban landscape. Remote Sens. 2019, 11, 1016. [Google Scholar]
- He, B.; Zhao, Z.; Shen, L.; Wang, H.; Li, L. An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under different temperature backgrounds based on landsat 8 image. Sustain. Cities Soc. 2019, 44, 416–427. [Google Scholar]
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar]
- Latifovic, R.; Pouliot, D. Multitemporal land cover mapping for Canada: Methodology and products. Can. J. Remote Sens. 2005, 31, 347–363. [Google Scholar]
- Olthof, I.; Latifovic, R.; Pouliot, D. Medium Resolution Land Cover Mapping of Canada from SPOT 4/5 Data. Geomatics Canada, Open File 4. 2015. Available online: http://ftp2.cits.rncan.gc.ca/pub/geott/ess_pubs/295/295751/of_0004_gc.pdf (accessed on 10 July 2020).
- da Campos Macedo, R.; Moreira, M.Z.; Domingues, E.; Couto, Â.M.R.; da Giusti Sanson, F.E.; Teixeira, F.W. LUCC (Land Use and Cover Change) and the environmental-economic accounts system in Brazil. J. Earth Sci. Eng. 2013, 3, 840. [Google Scholar]
- Prodes, I.P. Monitoramento da floresta Amazônica Brasileira por satélite. Inst. Nac. Pesqui. Espac. Proj. Prodes. 2013, 25, 2013. [Google Scholar]
- Lymburner, L.; Tan, P.; McIntyre, A.; Lewis, A.; Thankappan, M. Dynamic Land Cover Dataset version 2: 2001-now…a land cover odyssey. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Deng, X.; Liu, J. Mapping land cover and land use changes in China. In Remote Sensing of Land Use and Land Cover: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2012; pp. 339–349. [Google Scholar]
- Hu, L.; Chen, Y.; Xu, Y.; Zhao, Y.; Yu, L.; Wang, J.; Gong, P. A 30 meter land cover mapping of China with an efficient clustering algorithm CBEST. Sci. China Earth Sci. 2014, 57, 2293–2304. [Google Scholar]
- Feranec, J.; Soukup, T.; Hazeu, G.; Jaffrain, G. (Eds.) European Landscape Dynamics: CORINE Land Cover Data; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Inglada, J.; Vincent, A.; Arias, M.; Tardy, B.; Morin, D.; Rodes, I. Operational high resolution land cover map production at the country scale using satellite image time series. Remote Sens. 2017, 9, 95. [Google Scholar]
- Schepaschenko, D.; McCallum, I.; Shvidenko, A.; Fritz, S.; Kraxner, F.; Obersteiner, M. A new hybrid land cover dataset for Russia: A methodology for integrating statistics, remote sensing and in situ information. J. Land Use Sci. 2011, 6, 245–259. [Google Scholar]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 national land cover database for the counterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337. [Google Scholar]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar]
- Brown, J.F.; Tollerud, H.J.; Barber, C.P.; Zhou, Q.; Dwyer, J.L.; Vogelmann, J.E.; Loveland, T.R.; Woodcock, C.E.; Stehman, S.V.; Zhu, Z. Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sens. Environ. 2019, 238, 111356. [Google Scholar]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K. Analysis ready data: Enabling analysis of the Landsat archive. Remote Sens. 2018, 10, 1363. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar]
- Carfagna, E.; Marzialetti, J. Sequential design in quality control and validation of land cover databases. Appl. Stoch. Models Bus. Ind. 2009, 25, 195–205. [Google Scholar]
- Estima, J.; Painho, M. Photo based Volunteered Geographic Information initiatives: A comparative study of their suitability for helping quality control of Corine Land Cover. In Geospatial Intelligence: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2019; pp. 1124–1142. [Google Scholar]
- Wu, W.; Shibasaki, R.; Ongaro, L.; Ongaro, L.; Zhou, Q.; Tang, H. Validation and comparison of 1 km global land cover products in China. Int. J. Remote Sens. 2008, 29, 3769–3785. [Google Scholar]
- Stehman, S.V.; Olofsson, P.; Woodcock, C.E.; Herold, M.; Friedl, M.A. A global land-cover validation data set, II: Augmenting a stratified sampling design to estimate accuracy by region and land-cover class. Int. J. Remote Sens. 2012, 33, 6975–6993. [Google Scholar]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; European Communities: Luxembourg, 2006; p. 51. [Google Scholar]
- Olofsson, P.; Stehman, S.V.; Woodcock, C.E.; Sulla-Menashe, D.; Sibley, A.M.; Newell, J.D.; Friedl, M.A.; Herold, M. A global land-cover validation data set, part I: Fundamental design principles. Int. J. Remote Sens. 2012, 33, 5768–5788. [Google Scholar]
- Pengra, B.W.; Stehman, S.V.; Horton, J.A.; Dockter, D.J.; Schroeder, T.A.; Yang, Z.; Cohen, W.B.; Healey, S.P.; Loveland, T.R. Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. Remote Sens. Environ. 2019, 238, 111261. [Google Scholar]
- Xian, G.; Homer, C.; Fry, J. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ 2009, 113, 1133–1147. [Google Scholar]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar]
- Jin, S.; Homer, C.; Yang, L.; Danielson, P.; Dewitz, J.; Li, C.; Zhu, Z.; Xian, G.; Howard, D. Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sens. 2019, 11, 2971. [Google Scholar]
- Kriegel, H.P.; Kröger, P.; Schubert, E.; Zimek, A. LoOP: Local outlier probabilities. In Proceedings of the 18th ACM Conference on Information and Knowledge Management, Hong Kong, China, 2–6 November 2009. [Google Scholar]
NLCD Class (Class Code) | LCMAP Class (Class Code) |
---|---|
Water (11) | Water (5) |
Perennial ice/snow (12) | Ice and Snow (7) |
Developed, open space (21) | Developed (1) |
Developed, low intensity (22) | Developed (1) |
Developed, medium intensity (23) | Developed (1) |
Developed, high intensity (24) | Developed (1) |
Barren (31) | Barren (8) |
Deciduous forest (41) | Tree Cover (4) |
Evergreen forest (42) | Tree Cover (4) |
Mixed forest (43) | Tree Cover (4) |
Shrubland (52) | Grass/shrub (3) |
Grassland (71) | Grass/shrub (3) |
Pasture (81) | Cropland (2) |
Cultivated crops (82) | Cropland (2) |
Woody wetlands (90) | Wetland (6) |
Herbaceous wetland (95) | Wetland (6) |
INDEX | DESCRIPTION |
---|---|
Least agreement | The least agreement between NLCD and LCMAP in 2001, 2006, and 2011. |
Disagreement large patch | Largest size of cohesive pixels that disagree between NLCD and LCMAP in 2001, 2006, and 2011. |
Disagreement salt pepper | Number of single pixels that disagree between NLCD and LCMAP in 2001, 2006, and 2011. |
No model large patch | Largest size of cohesive pixels that have insufficient observation to initialize model. |
No model salt pepper | Number of single pixels that have insufficient observation to initialize model. |
Urban decrease | Maximum urban area decreases in 30+ years. |
SCTIME max | Maximum annual spectral change rate across time series of the Timing of Spectral Change product (SCTIME). |
SCTIME mean | Mean annual change spectral rate across time series. |
SCTIME min | Minimum annual change spectral rate across time series. |
SCTIME std | Standard deviation annual spectral change rate across time series. |
LC Change max | Maximum annual land cover change rate across time series. |
LC Change mean | Mean annual land cover change rate across time series. |
LC Change min | Minimum annual land cover change rate across time series. |
LC Change std | Standard deviation annual land cover change rate across time series. |
Tile | H25V15 | H24V14 | H24V15 | H24V16 | H25V14 | H25V16 | H26V14 | H26V15 | H26V16 | |
---|---|---|---|---|---|---|---|---|---|---|
Least agreement | 82.6% | 80.5% | 78.9% | 90.8% | 79.9% | 79.0% | 88.2% | 94.4% | 85.5% | |
Disagreement (km2) | large patch | 1.37 | 1.53 | 4.23 | 3.81 | 1.38 | 4.12 | 4.26 | 3.29 | 4.32 |
salt pepper | 170.50 | 159.48 | 154.56 | 93.01 | 184.40 | 163.02 | 117.25 | 56.42 | 109.49 | |
No model (km2) | large patch | 0.28 | 0.13 | 0.20 | 0.58 | 0.23 | 0.56 | 0.14 | 0.76 | 1.19 |
salt pepper | 0.97 | 2.42 | 0.66 | 3.20 | 1.59 | 2.29 | 1.56 | 7.68 | 8.13 | |
Urban decrease (km2) | 10.96 | 57.18 | 24.35 | 2.56 | 111.89 | 23.16 | 14.18 | 7.55 | 14.42 | |
SCTIME | max | 0.125 | 0.074 | 0.071 | 0.066 | 0.071 | 0.093 | 0.056 | 0.066 | 0.084 |
mean | 0.057 | 0.037 | 0.034 | 0.035 | 0.049 | 0.052 | 0.036 | 0.041 | 0.041 | |
min | 0.009 | 0.003 | 0.004 | 0.005 | 0.011 | 0.004 | 0.009 | 0.011 | 0.006 | |
std | 0.025 | 0.013 | 0.013 | 0.012 | 0.015 | 0.020 | 0.011 | 0.013 | 0.016 | |
LC Change | max | 0.038 | 0.034 | 0.028 | 0.022 | 0.035 | 0.042 | 0.024 | 0.031 | 0.033 |
mean | 0.028 | 0.025 | 0.018 | 0.016 | 0.028 | 0.032 | 0.017 | 0.023 | 0.023 | |
min | 0.014 | 0.012 | 0.010 | 0.006 | 0.017 | 0.014 | 0.012 | 0.016 | 0.012 | |
std | 0.004 | 0.004 | 0.004 | 0.003 | 0.004 | 0.006 | 0.002 | 0.003 | 0.004 |
Tile | H18V5 | H17V4 | H17V5 | H17V6 | H18V4 | H18V6 | H19V4 | H19V5 | H19V6 | |
---|---|---|---|---|---|---|---|---|---|---|
Least agreement | 79.3% | 80.5% | 86.8% | 90.1% | 83.0% | 87.2% | 86.4% | 83.0% | 85.4% | |
Disagreement (km2) | large patch | 5.43 | 6.25 | 6.21 | 1.91 | 5.13 | 5.10 | 4.43 | 5.19 | 2.98 |
salt_pepper | 134.93 | 118.20 | 79.46 | 55.61 | 154.00 | 84.46 | 77.35 | 130.14 | 169.88 | |
No model (km2) | large patch | 0.34 | 0.19 | 0.25 | 0.13 | 0.26 | 0.39 | 0.83 | 0.62 | 0.51 |
salt_pepper | 6.81 | 1.82 | 2.03 | 1.63 | 1.11 | 4.42 | 2.20 | 5.05 | 3.21 | |
Urban decrease (km2) | 0.37 | 2.17 | 5.21 | 9.67 | 0.18 | 0.27 | 1.33 | 1.20 | 3.52 | |
SCTIME | max | 0.024 | 0.010 | 0.010 | 0.009 | 0.014 | 0.013 | 0.007 | 0.006 | 0.005 |
mean | 0.007 | 0.005 | 0.004 | 0.002 | 0.005 | 0.003 | 0.004 | 0.003 | 0.003 | |
min | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | |
std | 0.005 | 0.002 | 0.002 | 0.002 | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 | |
LC Change | max | 0.007 | 0.002 | 0.003 | 0.002 | 0.003 | 0.003 | 0.003 | 0.002 | 0.002 |
mean | 0.003 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | |
min | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | |
std | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Barber, C.; Xian, G. Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring. Remote Sens. 2020, 12, 2524. https://doi.org/10.3390/rs12162524
Zhou Q, Barber C, Xian G. Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring. Remote Sensing. 2020; 12(16):2524. https://doi.org/10.3390/rs12162524
Chicago/Turabian StyleZhou, Qiang, Christopher Barber, and George Xian. 2020. "Methods of Rapid Quality Assessment for National-Scale Land Surface Change Monitoring" Remote Sensing 12, no. 16: 2524. https://doi.org/10.3390/rs12162524