Evaluating the Spectral Indices Efficiency to Quantify Daytime Surface Anthropogenic Heat Island Intensity: An Intercontinental Methodology
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.2. Methods
3.2.1. Preprocessing
3.2.2. Modelling LST and SIISC
3.2.3. Quantifying DSAHII
3.2.4. Evaluating the Efficiency of SIISC for DSAHII Quantification
4. Results
4.1. Spatial Distribution of Spectral Index Values
4.2. Quantifying DSAHII
4.3. Evaluating the Effectiveness of SIISC for DSAHII Quantification
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, P.; Weng, Q. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Weng, Q.; Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Alavipanah, S.K. Statistical analysis of surface urban heat island intensity variations: A case study of Babol city, Iran. Gisci. Remote Sens. 2019, 56, 576–604. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Weng, Q.; Zheng, Q.; Li, L.; Dai, S.; Guo, B. Characterizing the spatial pattern of annual urban growth by using time series Landsat imagery. Sci. Total Environ. 2019, 666, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Mijani, N.; Alavipanah, S.K.; Firozjaei, M.K.; Arsanjani, J.J.; Hamzeh, S.; Weng, Q. Modeling outdoor thermal comfort using satellite imagery: A principle component analysis-based approach. Ecol. Indic. 2020, 117, 106555. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Alavipanah, S.K.; Lakes, T.; Qureshi, S. Monitoring and forecasting heat island intensity through multi-temporal image analysis and cellular automata-Markov chain modelling: A case of Babol city, Iran. Ecol. Indic. 2018, 91, 155–170. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.; Maulud, K.; Tawil, N.; Abdullah, N. The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Stud. Res. 2011, 2011. [Google Scholar] [CrossRef] [Green Version]
- Haashemi, S.; Weng, Q.; Darvishi, A.; Alavipanah, S.K. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sens. 2016, 8, 352. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhou, Y.; Yue, W.; Li, X.; Liu, Y.; Lu, D. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. J. Clean. Prod. 2020, 257, 120529. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations Made in the Metropolis and at Various Places Around it Vols. I–III; Harvard University: Cambridge, MA, USA, 1833. [Google Scholar]
- Knapp, S.; Kühn, I.; Stolle, J.; Klotz, S. Changes in the functional composition of a Central European urban flora over three centuries. Perspect. Plant Ecol. Evol. Syst. 2010, 12, 235–244. [Google Scholar] [CrossRef]
- Gaur, A.; Eichenbaum, M.K.; Simonovic, S.P. Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change. J. Environ. Manag. 2018, 206, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meier, F.; Lee, X.; Chakraborty, T.; Liu, J.; Schaap, M.; Sodoudi, S. Interaction between urban heat island and urban pollution island during summer in Berlin. Sci. Total Environ. 2018, 636, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Guattari, C.; Evangelisti, L.; Balaras, C.A. On the assessment of urban heat island phenomenon and its effects on building energy performance: A case study of Rome (Italy). Energy Build. 2018, 158, 605–615. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, G.; Wang, H.; Dou, J.; Gao, Z.; Duan, C.; Li, Y.; Ngarukiyimana, J.P.; Zhao, C.; Cao, C. Relationship between fine-particle pollution and the urban heat island in Beijing, China: Observational evidence. Bound. -Layer Meteorol. 2018, 169, 93–113. [Google Scholar] [CrossRef]
- Zhao, L.; Oppenheimer, M.; Zhu, Q.; Baldwin, J.W.; Ebi, K.L.; Bou-Zeid, E.; Guan, K.; Liu, X. Interactions between urban heat islands and heat waves. Environ. Res. Lett. 2018, 13, 034003. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Middel, A.; Harlan, S.; Brazel, A.; Turner, B. Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral–demographic–economic factors. Remote Sens. Environ. 2016, 174, 233–243. [Google Scholar] [CrossRef] [Green Version]
- Taleghani, M. Outdoor thermal comfort by different heat mitigation strategies-A review. Renew. Sustain. Energy Rev. 2018, 81, 2011–2018. [Google Scholar] [CrossRef]
- Watkins, R.; Palmer, J.; Kolokotroni, M. Increased temperature and intensification of the urban heat island: Implications for human comfort and urban design. Built Environ. 2007, 33, 85–96. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef] [Green Version]
- Herbel, I.; Croitoru, A.-E.; Rus, A.V.; Roşca, C.F.; Harpa, G.V.; Ciupertea, A.-F.; Rus, I. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania. Theor. Appl. Climatol. 2018, 133, 681–695. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Zhang, L.; Wu, P.; Zeng, C. Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China. Remote Sens. Environ. 2016, 172, 109–125. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Feng, J.; Yan, Z.; Miao, S.; Zhang, Y.; Xia, J. Observational and modeling study of interactions between urban heat island and heatwave in Beijing. J. Clean. Prod. 2020, 247, 119169. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Sun, Z.; Meng, F.; Wang, L.; Sun, Y. Characterizing spatial and temporal trends of surface urban heat island effect in an urban main built-up area: A 12-year case study in Beijing, China. Remote Sens. Environ. 2018, 204, 826–837. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface urban heat island in China’s 32 major cities: Spatial patterns and drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Liu, N.; Morawska, L. Modeling the urban heat island mitigation effect of cool coatings in realistic urban morphology. J. Clean. Prod. 2020, 121560. [Google Scholar] [CrossRef]
- Sun, R.; Lü, Y.; Yang, X.; Chen, L. Understanding the variability of urban heat islands from local background climate and urbanization. J. Clean. Prod. 2019, 208, 743–752. [Google Scholar] [CrossRef]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Kiavarz, M.; Arsanjani, J.J.; Alavipanah, S.K. Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecol. Indic. 2020, 109, 105816. [Google Scholar] [CrossRef]
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Leal Filho, W.; Icaza, L.E.; Neht, A.; Klavins, M.; Morgan, E.A. Coping with the impacts of urban heat islands. A literature based study on understanding urban heat vulnerability and the need for resilience in cities in a global climate change context. J. Clean. Prod. 2018, 171, 1140–1149. [Google Scholar] [CrossRef] [Green Version]
- Gartland, L.M. Heat Islands: Understanding and Mitigating Heat in Urban Areas; Routledge: Abingdon-on-Thames, UK, 2012. [Google Scholar]
- Zhang, Y.; Balzter, H.; Wu, X. Spatial–temporal patterns of urban anthropogenic heat discharge in Fuzhou, China, observed from sensible heat flux using Landsat TM/ETM+ data. Int. J. Remote Sens. 2013, 34, 1459–1477. [Google Scholar] [CrossRef] [Green Version]
- Kato, S.; Yamaguchi, Y. Analysis of urban heat-island effect using ASTER and ETM+ Data: Separation of anthropogenic heat discharge and natural heat radiation from sensible heat flux. Remote Sens. Environ. 2005, 99, 44–54. [Google Scholar] [CrossRef]
- Chen, S.; Hu, D.; Wong, M.S.; Ren, H.; Cao, S.; Yu, C.; Ho, H.C. Characterizing spatiotemporal dynamics of anthropogenic heat fluxes: A 20-year case study in Beijing–Tianjin–Hebei region in China. Environ. Pollut. 2019, 249, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hu, D.; Chen, S.; Yu, C. A Partition Modeling for Anthropogenic Heat Flux Mapping in China. Remote Sens. 2019, 11, 1132. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Wang, Y.; Chen, L. A distributed model for quantifying temporal-spatial patterns of anthropogenic heat based on energy consumption. J. Clean. Prod. 2018, 170, 601–609. [Google Scholar] [CrossRef]
- Iamarino, M.; Beevers, S.; Grimmond, C. High-resolution (space, time) anthropogenic heat emissions: London 1970–2025. Int. J. Climatol. 2012, 32, 1754–1767. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, D. Parameterizing Anthropogenic Heat Flux with an Energy-Consumption Inventory and Multi-Source Remote Sensing Data. Remote Sens. 2017, 9, 1165. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Yang, L.; Zhou, J.; Deng, L. Estimation of urban energy heat flux and anthropogenic heat discharge using aster image and meteorological data: Case study in Beijing metropolitan area. J. Appl. Remote Sens. 2012, 6, 063559. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. Responses of urban heat island in Atlanta to different land-use scenarios. Theor. Appl. Climatol. 2018, 133, 123–135. [Google Scholar] [CrossRef]
- Gabey, A.; Grimmond, C.; Capel-Timms, I. Anthropogenic heat flux: Advisable spatial resolutions when input data are scarce. Theor. Appl. Climatol. 2019, 135, 791–807. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Fang, J.-y.; Zhao, D.; Liu, X.; Zhang, X.-h.; Wang, X.; Li, X.-k. An assessment of urban surface energy fluxes using a sub-pixel remote sensing analysis: A case study in Suzhou, China. ISPRS Int. J. Geo-Inf. 2016, 5, 11. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, D.; Weng, Q. Analysis of surface radiation budget during the summer and winter in the metropolitan area of Beijing, China. J. Appl. Remote Sens. 2010, 4, 043513. [Google Scholar]
- Weng, Q.; Hu, X.; Quattrochi, D.A.; Liu, H. Assessing intra-urban surface energy fluxes using remotely sensed ASTER imagery and routine meteorological data: A case study in Indianapolis, USA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4046–4057. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface anthropogenic heat islands in six megacities: An assessment based on a triple-source surface energy balance model. Remote Sens. Environ. 2020, 242, 111751. [Google Scholar] [CrossRef]
- Kawamura, M.; Jayamana, S.; Tsujiko, Y. Relation between social and environmental conditions in Colombo Sri Lanka and the urban index estimated by satellite remote sensing data. Int. Arch. Photogramm. Remote Sens. 1996, 31, 321–326. [Google Scholar]
- Zhao, H.; Chen, X. Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Int. Geosci. Remote Sens. Symp. 2005, 3, 1666. [Google Scholar]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Xu, H. A new index for delineating built-up land features in satellite imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- He, C.; Shi, P.; Xie, D.; Zhao, Y. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sens. Lett. 2010, 1, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Waqar, M.M.; Mirza, J.F.; Mumtaz, R.; Hussain, E. Development of new indices for extraction of built-up area & bare soil from landsat data. Open Access Sci. Rep 2012, 1, 4. [Google Scholar]
- Kaimaris, D.; Patias, P. Identification and area measurement of the built-up area with the Built-up Index (BUI). Int. J. Adv. Remote Sens. Gis 2016, 5, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Bouzekri, S.; Lasbet, A.A.; Lachehab, A. A new spectral index for extraction of built-up area using landsat-8 data. J. Indian Soc. Remote Sens. 2015, 43, 867–873. [Google Scholar] [CrossRef]
- Rikimaru, A. Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow. In Presented Paper. 18th ACRS; Hosei University: Tokyo, Japan, 1997. [Google Scholar]
- Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Liu, X.; Wu, G. Rapid urbanization and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol. Indic. 2020, 115, 106373. [Google Scholar] [CrossRef]
- Bhatti, S.S.; Tripathi, N.K. Built-up area extraction using Landsat 8 OLI imagery. Gisci. Remote Sens. 2014, 51, 445–467. [Google Scholar] [CrossRef] [Green Version]
- As-syakur, A.; Adnyana, I.; Arthana, I.W.; Nuarsa, I.W. Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area. Remote Sens. 2012, 4, 2957–2970. [Google Scholar] [CrossRef] [Green Version]
- Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Qureshi, S.; Haase, D.; Alavipanah, S.K. Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas Using LANDSAT 8 OLI Imagery. Remote Sens. 2019, 11, 1966. [Google Scholar] [CrossRef] [Green Version]
- Firozjaei, M.K.; Fathololoumi, S.; Weng, Q.; Kiavarz, M.; Alavipanah, S.K. Remotely Sensed Urban Surface Ecological Index (RSUSEI): An Analytical Framework for Assessing the Surface Ecological Status in Urban Environments. Remote Sens. 2020, 12, 2029. [Google Scholar] [CrossRef]
- Ding, H.; Shi, W. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. Int. J. Remote Sens. 2013, 34, 5503–5517. [Google Scholar] [CrossRef]
- Boori, M.S. A comparison of land surface temperature, derived from AMSR-2, Landsat and ASTER satellite data. J. Geogr. Geol. 2015, 7, 61. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN® 6: A major upgrade of the MODTRAN® radiative transfer code. In Proceedings of the Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; pp. 1–4. [Google Scholar]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray light artifacts in imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2014, 6, 10435–10456. [Google Scholar] [CrossRef] [Green Version]
- Duan, S.-B.; Li, Z.-L.; Wang, C.; Zhang, S.; Tang, B.-H.; Leng, P.; Gao, M.-F. Land-surface temperature retrieval from Landsat 8 single-channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. Int. J. Remote Sens. 2019, 40, 1763–1778. [Google Scholar] [CrossRef]
- Mijani, N.; Alavipanah, S.K.; Hamzeh, S.; Firozjaei, M.K.; Arsanjani, J.J. Modeling thermal comfort in different condition of mind using satellite images: An Ordered Weighted Averaging approach and a case study. Ecol. Indic. 2019, 104, 1–12. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Li, X.; Meng, L.; Wang, X.; Wu, S.; Sodoudi, S. A new method to quantify surface urban heat island intensity. Sci. Total Environ. 2018, 624, 262–272. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, J. Spatio-Temporal Analysis of Urban Heat Island Using Multisource Remote Sensing Data: A Case Study in Hangzhou, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3317–3326. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Alavipanah, S.K.; Liu, H.; Sedighi, A.; Mijani, N.; Kiavarz, M.; Weng, Q. A PCA–OLS Model for Assessing the Impact of Surface Biophysical Parameters on Land Surface Temperature Variations. Remote Sens. 2019, 11, 2094. [Google Scholar] [CrossRef] [Green Version]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating ecosystem services and green infrastructure: Assessment of urban heat island effect mitigation in the municipality of Rome, Italy. Ecol. Model. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Grigoraș, G.; Urițescu, B. Land Use/Land Cover Changes Dynamics and Their Effects on Surface Urban Heat Island in Bucharest, Romania. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 115–126. [Google Scholar] [CrossRef]
- Arnds, D.; Böhner, J.; Bechtel, B. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city. Theor. Appl. Climatol. 2017, 128, 43–61. [Google Scholar] [CrossRef]
- Dian, C.; Pongrácz, R.; Dezső, Z.; Bartholy, J. Annual and monthly analysis of surface urban heat island intensity with respect to the local climate zones in Budapest. Urban Clim. 2020, 31, 100573. [Google Scholar] [CrossRef]
Centre Point Coordinate (Lon, Lat-WGS84) | Country | Area (km2) | Mean Alt. (m) | Climate | Population (2020) | |
---|---|---|---|---|---|---|
European cities | ||||||
Rome | 12.45, 41.85 | Italy | 631.7 | 50 | Mediterranean | >4,250,000 |
Madrid | −3.70, 40.41 | Spain | 2332.3 | 650 | Mediterranean and semi-arid | >6,670,000 |
Porto | −8.60, 41.16 | Portugal | 481.4 | 80 | Mediterranean | >1,309,000 |
Lyon | 4.83, 45.76 | France | 1143.6 | 175 | Humid subtropical | >1,710,000 |
Ciechanow | 20.60, 52.82 | Poland | 81.1 | 151 | Humid subtropical | >44,000 |
Hamburg | 10.02, 53.60 | Germany | 1097.5 | 10 | Oceanic | >1,795,000 |
Budapest | 19.07, 47.59 | Hungary | 3664.3 | 120 | Oceanic and Humid subtropical | >1,764,000 |
Bucharest | 26.10, 44.42 | Romania | 1385.7 | 85 | Humid continental | >1,815,000 |
American cities | ||||||
Minneapolis | −93.26, 44.97 | United States | 8719.6 | 253 | Humid continental | >432,110 |
Fort Worth | −96.95, 36.85 | 14,998.1 | 199 | Humid subtropical | >875,000 | |
Phoenix | −112.09, 33.12 | 8543.8 | 331 | Midlatitude desert | >1,632,000 | |
Seattle | −122.25, 45.47 | 11,497.5 | 52 | Marine West coast | >3,406,000 | |
Chicago | −87.66, 41.86 | 12,685.1 | 182 | Humid continental | >2,705,000 | |
Los Angeles | −118.22, 34.00 | 11,127.4 | 282 | Mediterranean | >4,000,000 |
Landsat 8 | |||||
---|---|---|---|---|---|
Selected Cities | Date | Row | Path | Spatial Resolution | Source |
Rome | 12 April 2015, | 191 | 031 | 30 m for reflective and 100 m for thermal bands | United States Geological Survey (USGS) website |
14 May 2015, | |||||
30 May 2015, | |||||
01 July 2015, | |||||
17 July 2015 | |||||
Madrid | 02 April 2015, | 197 | 028 | ||
20 May 2015, | |||||
21 June 2015, | |||||
07 July 2015, | |||||
23 July 2015, | |||||
25 September 2015 | |||||
Porto | 07 April 2015, | 204 | 032 | ||
16 May 2015, | |||||
17 June 2015, | |||||
03 July 2015, | |||||
12 July 2015, | |||||
28 July 2015, | |||||
04 August 2015, | |||||
29 August 2015, | |||||
21 September 2015 | |||||
Lyon | 06 April 2015, | 196 | 023 | ||
25 June 2015, | |||||
04 July 2015, | |||||
05 August 2015, | |||||
21 August 2015, | |||||
28 August 2015, | |||||
29 September 2015 | |||||
Ciechanow | 23 April 2015, | 189 | 023 | ||
03 July 2015, | |||||
04 August 2015, | |||||
13 August 2015 | |||||
Hamburg | 15 April 2015, | 201 | 34 | ||
24 April 2015, | |||||
11 June 2015, | |||||
04 July 2015, | |||||
21 August 2015 | |||||
Budapest | 16 April 2015, | 188 | 027 | ||
10 June 2015, | |||||
12 July 2015, | |||||
13 August 2015, | |||||
29 August 2015 | |||||
Bucharest | 13 April 2015, | 182 | 029 | ||
15 May 2015, | |||||
07 June 2015, | |||||
09 July 2015, | |||||
25 July 2015, | |||||
03 August 2015, | |||||
26 August 2015, | |||||
04 September 2015 | |||||
Minneapolis | 19 May 2016, | 027 | 029 | ||
20 June 2016, | |||||
06 July 2016, | |||||
22 July 2016, | |||||
23 August 2016, | |||||
08 September 2016 | |||||
Dallas | 03 May 2016, | 027 | 037 | ||
06 July 2016, | |||||
22 July 2016, | |||||
07 August 2016, | |||||
08 September 2016 | |||||
Phoenix | 23 April 2016, | 037 | 037 | ||
09 May 2016, | |||||
25 May 2016, | |||||
12 July 2016, | |||||
28 July 2016, | |||||
29 August 2016, | |||||
14 September 2016 | |||||
Seattle | 31 May 2016, | 046 | 027 | ||
27 July 2016, | |||||
03 August 2016, | |||||
12 August 2016, | |||||
19 August 2016, | |||||
13 September 2016 | |||||
Chicago | 05 April 2016, | 021 | 031 | ||
14 April 2016, | |||||
23 May 2016, | |||||
08 June 2016, | |||||
17 June 2016, | |||||
24 June 2016, | |||||
04 August 2016, | |||||
12 September 2016 | |||||
Los Angeles | 19 April 2016, | 041 | 037 | ||
22 June 2016, | |||||
08 July 2016, | |||||
24 July 2016, | |||||
09 August 2016, | |||||
25 August 2016, | |||||
10 September 2016, | |||||
26 September 2016 | |||||
MODIS products | |||||
MOD07 | Landsat 8 overpass dates | - | 5000 m | Atmosphere Archive and Distribution System (AADS) website | |
MOD11A1 | 1000 m | ||||
AISC dataset | |||||
NLCD imperviousness | 2016 | - | 30 m | USGS at the https://www.mrlc.gov/data website | |
HRLI | 2015 | 20 m | Copernicus Global Land Service (CGLS) at the https://land.copernicus.eu/ website |
Band Numbers | Band Names | Sensor | Effective Wavelength (Micrometer) | Spatial Resolution (Meter) |
---|---|---|---|---|
B1 | Coastal aerosol | OLI | 0.443 | 30 |
B2 | Blue | 0.4826 | ||
B3 | Green | 0.5613 | ||
B4 | Red | 0.6546 | ||
B5 | Near Infrared (NIR) | 0.8646 | ||
B6 | SWIR 1 | 1.609 | ||
B7 | SWIR 2 | 2.201 | ||
B8 | Panchromatic | 0.5917 | 15 | |
B9 | Cirrus | 1.373 | 30 | |
B10 | Thermal Infrared 1 | TIRS | 10.9 | 100 (resampled to 30) |
B11 | Thermal Infrared 2 | 12.0 |
Spectral Index | Equation |
---|---|
NDBI | |
BI | |
UI | |
IBI | |
BU | |
BAEM | |
Albedo | |
ABEI | |
SI | |
NBBSI |
Cities | Parameters | SISC | SUI | SBI | SBAEM | SBU | SBBSI | SSI | SIBI | SAlbedo | SNDBI | SBrightness | SABEI | SBCI | SLST |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Budapest | Mean | 0.41 | 0.71 | 0.34 | 0.68 | 0.59 | 0.62 | 0.34 | 0.74 | 0.14 | 0.01 | 0.01 | 0.32 | 0.16 | 0.42 |
SD | 0.21 | 0.05 | 0.11 | 0.05 | 0.07 | 0.08 | 0.11 | 0.05 | 0.06 | 0.01 | 0.01 | 0.06 | 0.07 | 0.10 | |
Bucharest | Mean | 0.51 | 0.64 | 0.36 | 0.63 | 0.50 | 0.51 | 0.36 | 0.51 | 0.13 | 0.01 | 0.01 | 0.27 | 0.17 | 0.46 |
SD | 0.23 | 0.02 | 0.07 | 0.03 | 0.03 | 0.05 | 0.07 | 0.03 | 0.02 | 0.00 | 0.00 | 0.01 | 0.03 | 0.11 | |
Ciechanow | Mean | 0.39 | 0.48 | 0.57 | 0.56 | 0.39 | 0.55 | 0.57 | 0.40 | 0.18 | 0.48 | 0.31 | 0.26 | 0.13 | 0.36 |
SD | 0.20 | 0.16 | 0.18 | 0.16 | 0.15 | 0.19 | 0.18 | 0.14 | 0.04 | 0.16 | 0.06 | 0.04 | 0.07 | 0.11 | |
Hamburg | Mean | 0.59 | 0.56 | 0.32 | 0.37 | 0.24 | 0.45 | 0.32 | 0.46 | 0.09 | 0.56 | 0.09 | 0.24 | 0.18 | 0.43 |
SD | 0.27 | 0.05 | 0.07 | 0.05 | 0.08 | 0.09 | 0.07 | 0.08 | 0.02 | 0.05 | 0.02 | 0.01 | 0.03 | 0.08 | |
Lyon | Mean | 0.65 | 0.50 | 0.57 | 0.57 | 0.50 | 0.66 | 0.57 | 0.52 | 0.13 | 0.50 | 0.11 | 0.26 | 0.20 | 0.54 |
SD | 0.24 | 0.08 | 0.04 | 0.07 | 0.09 | 0.06 | 0.04 | 0.06 | 0.02 | 0.08 | 0.02 | 0.01 | 0.03 | 0.09 | |
Madrid | Mean | 0.63 | 0.74 | 0.04 | 0.46 | 0.47 | 0.85 | 0.04 | 0.87 | 0.13 | 0.74 | 0.11 | 0.27 | 0.16 | 0.61 |
SD | 0.24 | 0.03 | 0.01 | 0.04 | 0.06 | 0.16 | 0.81 | 0.09 | 0.02 | 0.03 | 0.03 | 0.01 | 0.03 | 0.10 | |
Porto | Mean | 0.66 | 0.31 | 0.85 | 0.39 | 0.35 | 0.08 | 0.85 | 0.87 | 0.18 | 0.31 | 0.13 | 0.28 | 0.20 | 0.48 |
SD | 0.26 | 0.07 | 0.31 | 0.09 | 0.09 | 0.47 | 0.31 | 0.28 | 0.04 | 0.07 | 0.06 | 0.01 | 0.06 | 0.17 | |
Rome | Mean | 0.63 | 0.36 | 0.36 | 0.38 | 0.30 | 0.57 | 0.36 | 0.56 | 0.13 | 0.36 | 0.11 | 0.27 | 0.15 | 0.45 |
SD | 0.23 | 0.08 | 0.11 | 0.09 | 0.11 | 0.12 | 0.11 | 0.11 | 0.02 | 0.08 | 0.02 | 0.02 | 0.04 | 0.10 | |
Dallas | Mean | 0.45 | 0.35 | 0.13 | 0.31 | 0.20 | 0.06 | 0.13 | 0.19 | 0.14 | 0.35 | 0.13 | 0.25 | 0.19 | 0.50 |
SD | 0.29 | 0.02 | 0.01 | 0.02 | 0.03 | 0.01 | 0.01 | 0.02 | 0.03 | 0.02 | 0.04 | 0.02 | 0.03 | 0.07 | |
Seattle | Mean | 0.37 | 0.31 | 0.31 | 0.37 | 0.23 | 0.37 | 0.31 | 0.37 | 0.07 | 0.31 | 0.09 | 0.32 | 0.18 | 0.39 |
SD | 0.26 | 0.11 | 0.15 | 0.1 | 0.12 | 0.15 | 0.15 | 0.19 | 0.04 | 0.11 | 0.05 | 0.01 | 0.06 | 0.13 | |
Minneapolis | Mean | 0.36 | 0.34 | 0.31 | 0.45 | 0.17 | 0.32 | 0.31 | 0.24 | 0.04 | 0.34 | 0.08 | 0.19 | 0.22 | 0.33 |
SD | 0.28 | 0.07 | 0.09 | 0.07 | 0.08 | 0.13 | 0.09 | 0.13 | 0.01 | 0.07 | 0.02 | 0.01 | 0.02 | 0.08 | |
Los Angeles | Mean | 0.56 | 0.54 | 0.44 | 0.53 | 0.56 | 0.56 | 0.44 | 0.56 | 0.1 | 0.54 | 0.1 | 0.35 | 0.26 | 0.42 |
SD | 0.26 | 0.09 | 0.13 | 0.11 | 0.1 | 0.09 | 0.13 | 0.14 | 0.06 | 0.09 | 0.06 | 0.04 | 0.06 | 0.19 | |
Chicago | Mean | 0.43 | 0.38 | 0.29 | 0.46 | 0.24 | 0.34 | 0.29 | 0.36 | 0.06 | 0.38 | 0.1 | 0.19 | 0.14 | 0.43 |
SD | 0.26 | 0.06 | 0.1 | 0.07 | 0.13 | 0.12 | 0.1 | 0.19 | 0.03 | 0.07 | 0.06 | 0.01 | 0.04 | 0.08 | |
Phoenix | Mean | 0.41 | 0.5 | 0.58 | 0.58 | 0.38 | 0.64 | 0.58 | 0.47 | 0.1 | 0.51 | 0.15 | 0.27 | 0.18 | 0.81 |
SD | 0.26 | 0.06 | 0.08 | 0.07 | 0.06 | 0.09 | 0.08 | 0.07 | 0.03 | 0.06 | 0.04 | 0.01 | 0.04 | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firozjaei, M.K.; Fathololoumi, S.; Mijani, N.; Kiavarz, M.; Qureshi, S.; Homaee, M.; Alavipanah, S.K. Evaluating the Spectral Indices Efficiency to Quantify Daytime Surface Anthropogenic Heat Island Intensity: An Intercontinental Methodology. Remote Sens. 2020, 12, 2854. https://doi.org/10.3390/rs12172854
Firozjaei MK, Fathololoumi S, Mijani N, Kiavarz M, Qureshi S, Homaee M, Alavipanah SK. Evaluating the Spectral Indices Efficiency to Quantify Daytime Surface Anthropogenic Heat Island Intensity: An Intercontinental Methodology. Remote Sensing. 2020; 12(17):2854. https://doi.org/10.3390/rs12172854
Chicago/Turabian StyleFirozjaei, Mohammad Karimi, Solmaz Fathololoumi, Naeim Mijani, Majid Kiavarz, Salman Qureshi, Mehdi Homaee, and Seyed Kazem Alavipanah. 2020. "Evaluating the Spectral Indices Efficiency to Quantify Daytime Surface Anthropogenic Heat Island Intensity: An Intercontinental Methodology" Remote Sensing 12, no. 17: 2854. https://doi.org/10.3390/rs12172854