Revisiting Trans-Arctic Maritime Navigability in 2011–2016 from the Perspective of Sea Ice Thickness
Abstract
:1. Introduction
2. Materials and Methods
2.1. CMST Sea Ice Data
2.2. Methods of Navigability Estimation
3. Results
3.1. Optimal Trans-Arctic Shipping Routes (OASR)
3.2. Daily Transit Time and Navigation Windows
3.3. Regional Navigability
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007-the Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Serreze, M.C.; Francis, J.A. The Arctic amplification debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Holland, M.M.; Bitz, C.M.; Tremblay, B. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Overland, J.E. A sea ice free summer Arctic within 30 years: An update from CMIP5 models. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Onarheim, I.H.; Eldevik, T.; Smedsrud, L.H.; Stroeve, J.C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 2018, 31, 4917–4932. [Google Scholar] [CrossRef]
- Smith, L.C.; Stephenson, S.R. New Trans-Arctic shipping routes navigable by midcentury. Proc. Natl. Acad. Sci. USA 2013, 110, E1191–E1195. [Google Scholar] [CrossRef] [Green Version]
- Melia, N.; Haines, K.; Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 2016, 43, 9720–9728. [Google Scholar] [CrossRef]
- Khon, V.C.; Mokhov, I.I.; Semenov, V.A. Transit navigation through Northern Sea Route from satellite data and CMIP5 simulations. Environ. Res. Lett. 2017, 12, 024010. [Google Scholar] [CrossRef] [Green Version]
- Schøyen, H.; Bråthen, S. The Northern Sea Route versus the Suez Canal: Cases from bulk shipping. J. Transp. Geogr. 2011, 19, 977–983. [Google Scholar] [CrossRef]
- Mäkynen, M.; Haapala, J.; Aulicino, G.; Balan-Sarojini, B.; Balmaseda, M.; Gegiuc, A.; Girard-Ardhuin, F.; Hendricks, S.; Heygster, G.; Istomina, L. Satellite observations for detecting and forecasting sea-ice conditions: A summary of advances made in the SPICES project by the EU’s Horizon 2020 programme. Remote Sens. 2020, 12, 1214. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, S.R.; Brigham, L.W.; Smith, L.C. Marine accessibility along Russia's Northern Sea Route. Polar Geogr. 2013, 37, 111–133. [Google Scholar] [CrossRef]
- Khon, V.C.; Mokhov, I.I.; Latif, M.; Semenov, V.A.; Park, W. Perspectives of Northern Sea Route and Northwest Passage in the twenty-first century. Clim. Chang. 2009, 100, 757–768. [Google Scholar] [CrossRef]
- Stephenson, S.R.; Smith, L.C.; Brigham, L.W.; Agnew, J.A. Projected 21st-century changes to Arctic marine access. Clim. Chang. 2013, 118, 885–899. [Google Scholar] [CrossRef] [Green Version]
- Mokhov, I.I.; Khon, V.C.; Prokof’eva, M.A. New model estimates of changes in the duration of the navigation period for the Northern Sea Route in the 21st century. Dokl. Earth Sci. 2016, 468, 641–645. [Google Scholar] [CrossRef]
- Wei, T.; Yan, Q.; Qi, W.; Ding, M.; Wang, C. Projections of Arctic sea ice conditions and shipping routes in the twenty-first century using CMIP6 forcing scenarios. Environ. Res. Lett. 2020, 15, 104079. [Google Scholar] [CrossRef]
- Stephenson, S.R.; Smith, L.C. Influence of climate model variability on projected Arctic shipping futures. Earths Future 2015, 3, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Melia, N.; Haines, K.; Hawkins, E.; Day, J.J. Towards seasonal Arctic shipping route predictions. Environ. Res. Lett. 2017, 12, 084005. [Google Scholar] [CrossRef]
- Stern, D.P.; Doyle, J.D.; Barton, N.P.; Finocchio, P.M.; Komaromi, W.A.; Metzger, E.J. The Impact of an Intense Cyclone on Short-Term Sea Ice Loss in a Fully Coupled Atmosphere-Ocean-Ice Model. Geophys. Res. Lett. 2020, 47, e2019GL085580. [Google Scholar] [CrossRef]
- Caballero, R.; Woods, C. The Role of Moist Intrusions in Winter Arctic Warming and Sea Ice Decline. J. Clim. 2016, 29, 4473–4485. [Google Scholar] [CrossRef]
- Mu, L.; Losch, M.; Yang, Q.; Ricker, R.; Losa, S.N.; Nerger, L. Arctic-Wide Sea Ice Thickness Estimates From Combining Satellite Remote Sensing Data and a Dynamic Ice-Ocean Model with Data Assimilation During the CryoSat-2 Period. J. Geophys. Res. Ocean. 2018, 123, 7763–7780. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, S.R.; Smith, L.C.; Agnew, J.A. Divergent long-term trajectories of human access to the Arctic. Nat. Clim. Chang. 2011, 1, 156–160. [Google Scholar] [CrossRef]
- Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L.; Heisey, C. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Ocean. 1997, 102, 5753–5766. [Google Scholar] [CrossRef] [Green Version]
- Nerger, L.; Hiller, W. Software for ensemble-based data assimilation Systems—Implementation strategies and scalability. Comput. Geosci. 2013, 55, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hibler, W., III. On an efficient numerical method for modeling sea ice dynamics. J. Geophys. Res. Ocean. 1997, 102, 8691–8702. [Google Scholar] [CrossRef]
- Hibler, W., III. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 1979, 9, 815–846. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L.; Washington, W.M. A large-scale numerical model of sea ice. J. Geophys. Res. Ocean. 1979, 84, 311–337. [Google Scholar] [CrossRef]
- Semtner, A.J., Jr. A model for the thermodynamic growth of sea ice in numerical investigations of climate. J. Phys. Oceanogr. 1976, 6, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Bougeault, P.; Toth, Z.; Bishop, C.; Brown, B.; Burridge, D.; Chen, D.H.; Ebert, B.; Fuentes, M.; Hamill, T.M.; Mylne, K. The THORPEX interactive grand global ensemble. Bull. Am. Meteorol. Soc. 2010, 91, 1059–1072. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Comiso, J.C. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys. Res. Lett. 2013, 40, 1356–1361. [Google Scholar] [CrossRef]
- Petty, A.A.; Stroeve, J.C.; Holland, P.R.; Boisvert, L.N.; Bliss, A.C.; Kimura, N.; Meier, W.N. The Arctic sea ice cover of 2016: A year of record-low highs and higher-than-expected lows. Cryosphere 2018, 12, 433–452. [Google Scholar] [CrossRef] [Green Version]
- Min, C.; Mu, L.; Yang, Q.; Ricker, R.; Shi, Q.; Han, B.; Wu, R.; Liu, J. Sea ice export through the Fram Strait derived from a combined model and satellite data set. Cryosphere 2019, 13, 3209–3224. [Google Scholar] [CrossRef] [Green Version]
- Transport Canada. Arctic Ice Regime Shipping System (AIRSS) Standards; Transport Canada: Ottawa, ON, Canada, 1998. [Google Scholar]
- McCallum, J. Safe Speed in Ice: An Analysis of Transit Speed and Ice Decision Numerals; Ship Safety Northern (AMNS), Transport Canada: Ottawa, ON, Canada, 1996. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Tilling, R.L.; Ridout, A.; Shepherd, A.; Wingham, D.J. Increased Arctic sea ice volume after anomalously low melting in 2013. Nat. Geosci. 2015, 8, 643–646. [Google Scholar] [CrossRef] [Green Version]
- Howell, S.; Wohlleben, T.; Komarov, A.; Pizzolato, L.; Derksen, C. Recent extreme light sea ice years in the Canadian Arctic Archipelago: 2011 and 2012 eclipse 1998 and 2007. Cryosphere 2013, 7, 1753–1768. [Google Scholar] [CrossRef] [Green Version]
- Min, C.; Yang, Q.; Mu, L.; Kauker, F.; Ricker, R. Ensemble-based estimation of sea-ice volume variations in the Baffin Bay. Cryosphere 2021, 15, 169–181. [Google Scholar] [CrossRef]
- Howell, S.E.; Duguay, C.R.; Markus, T. Sea ice conditions and melt season duration variability within the Canadian Arctic Archipelago: 1979–2008. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Kwok, R. Sea ice convergence along the Arctic coasts of Greenland and the Canadian Arctic Archipelago: Variability and extremes (1992–2014). Geophys. Res. Lett. 2015, 42, 7598–7605. [Google Scholar] [CrossRef]
- Mudryk, L.R.; Derksen, C.; Howell, S.; Laliberté, F.; Thackeray, C.; Sospedra-Alfonso, R.; Vionnet, V.; Kushner, P.J.; Brown, R. Canadian snow and sea ice: Historical trends and projections. Cryosphere 2018, 12, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Dauginis, A.L.; Brown, L.C. Sea ice and snow phenology in the Canadian Arctic Archipelago from 1997 to 2018. Arct. Sci. 2020, 7, 1–26. [Google Scholar]
- Pizzolato, L.; Howell, S.E.L.; Dawson, J.; Laliberté, F.; Copland, L. The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophys. Res. Lett. 2016, 43, 12–146. [Google Scholar] [CrossRef]
- Aksenov, Y.; Popova, E.E.; Yool, A.; Nurser, A.J.G.; Williams, T.D.; Bertino, L.; Bergh, J. On the future navigability of Arctic sea routes: High-resolution projections of the Arctic Ocean and sea ice. Mar. Policy 2017, 75, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Buixadé Farré, A.; Stephenson, S.R.; Chen, L.; Czub, M.; Dai, Y.; Demchev, D.; Efimov, Y.; Graczyk, P.; Grythe, H.; Keil, K. Commercial Arctic shipping through the Northeast Passage: Routes, resources, governance, technology, and infrastructure. Polar Geogr. 2014, 37, 298–324. [Google Scholar] [CrossRef]
- Hill, E.; LaNore, M.; Véronneau, S. Northern sea route: An overview of transportation risks, safety, and security. J. Transp. Secur. 2015, 8, 69–78. [Google Scholar] [CrossRef]
- Lasserre, F. Case studies of shipping along Arctic routes. Analysis and profitability perspectives for the container sector. Transp. Res. Part A Policy Pract. 2014, 66, 144–161. [Google Scholar] [CrossRef]
- Milaković, A.-S.; Gunnarsson, B.; Balmasov, S.; Hong, S.; Kim, K.; Schütz, P.; Ehlers, S. Current status and future operational models for transit shipping along the Northern Sea Route. Mar. Policy 2018, 94, 53–60. [Google Scholar] [CrossRef]
Ice Numeral | Ship Safe Speed (nm/h) |
---|---|
<0 | 0 (unnavigable or unsafe) |
0–8 | 4 |
9–13 | 5 |
14–15 | 6 |
16 | 7 |
17 | 8 |
18 | 9 |
19 | 10 |
20 | 11 |
NSR/OW | Navigation Start Date | Navigation End Date | Navigation Window Length |
---|---|---|---|
2011 | 07–20 | 10–31 | 103 |
2012 | 08–05 | 10–31 | 87 |
2013 | 08–24 | 10–10 | 47 |
2014 | 08–02 | 10–25 | 84 |
2015 | 07–15 | 10–30 | 107 |
2016 | 08–13 | 11–04 | 83 |
Mean and standard deviation of navigation windows | 85 ± 21 |
NSR/PC6 | Navigation Start Date | Navigation End Date | Navigation Window Length |
---|---|---|---|
2011 | 06–26 | 02–05 | 224 |
2012 | 07–07 | 01–22 | 199 |
2013 | 07–20 | 01–04 | 168 |
2014 | 07–10 | 12–19 | 162 |
2015 | 06–26 | 01–02 | 190 |
2016 | 06–29 | / | / |
Mean and standard deviation of navigation windows | 189 ± 25 |
NWP/OW | Navigation Start Date | Navigation End Date | Navigation Window Length |
---|---|---|---|
2011 | 26 July | 23 October | 89 |
2012 | 19 July | 26 October | 99 |
2013 | 10 August | 14 August | 4 |
22 September | 1 October | 9 | |
2014 | 28 August | 11 September | 14 |
2015 | 28 July | 17 October | 81 |
2016 | 19 July | 23 July | 4 |
26 July | 18 October | 84 | |
Mean and standard deviation of navigation windows | 64 ± 40 |
NWP/PC6 | Navigation Start Date | Navigation End Date | Navigation Window Length |
---|---|---|---|
2011 | 28 June | 21 December | 176 |
28 December | 7 January | 10 | |
2012 | 29 June | 5 January | 190 |
2013 | 6 July | 13 December | 160 |
2014 | 12 July | 20 September | 70 |
3 October | 12 December | 70 | |
2015 | 4 July | 22 December | 171 |
2016 | 23 June | / | / |
Mean and standard deviation of navigation windows | 169 ± 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Min, C.; Yang, Y.; Landy, J.C.; Mu, L.; Yang, Q. Revisiting Trans-Arctic Maritime Navigability in 2011–2016 from the Perspective of Sea Ice Thickness. Remote Sens. 2021, 13, 2766. https://doi.org/10.3390/rs13142766
Zhou X, Min C, Yang Y, Landy JC, Mu L, Yang Q. Revisiting Trans-Arctic Maritime Navigability in 2011–2016 from the Perspective of Sea Ice Thickness. Remote Sensing. 2021; 13(14):2766. https://doi.org/10.3390/rs13142766
Chicago/Turabian StyleZhou, Xiangying, Chao Min, Yijun Yang, Jack C. Landy, Longjiang Mu, and Qinghua Yang. 2021. "Revisiting Trans-Arctic Maritime Navigability in 2011–2016 from the Perspective of Sea Ice Thickness" Remote Sensing 13, no. 14: 2766. https://doi.org/10.3390/rs13142766