Multiple Ship Tracking in Remote Sensing Images Using Deep Learning
Abstract
:1. Introduction
- (1)
- We chose YOLOv3 as the target detection framework and improved it to enhance the detection ability of the model. By removing the 52 × 52 prediction scale, the network depth is reduced, and the training time is greatly saved. In order to fit the target characteristics of the ship, we linearly stretched the anchor box after the K-means algorithm. We also adjusted the loss of the model to solve the imbalance of positive and negative samples.
- (2)
- To solve the problem of insufficient data, we selected ship targets under different complex backgrounds to make datasets and improve the performance evaluation of the network. MGN was used to extract more detailed target appearance information to facilitate the formation of a complete motion tracking trajectory.
2. Related Work
2.1. Object Detection
2.2. Feature Matching
2.2.1. Motion Model
2.2.2. Appearance Model
2.3. Data Association
3. Methods
3.1. Improvement of YOLOv3
3.1.1. Detection Scale
3.1.2. Anchor Box
3.1.3. Loss Function
3.2. Improvement of Appearance Model
4. Experiments
4.1. Experimental Design
4.1.1. Datasets Creation
- (1)
- We manually selected 40 pictures from the DOTA dataset to ensure that each picture contains approximately 10 ship targets and cropped them to 1024 × 1024 size images.
- (2)
- Regarding ships on the sea, the speed of ordinary cargo ships is 22–27 km/h and the speed of large container ships is 36–52 km/h. We divided the size of the ship target in the selected picture according to the pixel value: targets larger than 150 × 150 are considered large targets; otherwise, the targets are considered as small targets. Thus, the small target translates forward by 5 pixels per frame and the large target by 3 pixels.
- (3)
- We coded to implement operations, such as translation and rotation of the ship target in each picture, to obtain the required dataset.
- (4)
- Repeat the above steps until the production of 40 video sequences (the MOT dataset) was completed.
4.1.2. Evaluation and Implementation
4.2. Experiments and Analysis
4.2.1. Object Detection
4.2.2. Multi-Object Tracking
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bar-Shalom, Y.; Daum, F.; Huang, J. The probabilistic data association filter. IEEE Control. Syst. 2009, 29, 82–100. [Google Scholar]
- Samuel, S.; Joachim, B.; Emil, R.; Amrit, K.; Karl, G. Mono-Camera 3D Multi-Object Tracking Using Deep Learning Detections and PMBM Filtering. In Proceedings of the IEEE IV, Suzhou, China, 26–30 June 2018; pp. 433–440. [Google Scholar]
- Seyed, H.R.; Anton, M.; Zhang, Z.; Shi, Q.F.; Anthony, D.; Ian, R. Joint probabilistic data association revisited. In Proceedings of the IEEE ICCV, Santiago, Chile, 11–18 December 2015; pp. 3047–3055. [Google Scholar]
- Kim, C.; Li, F.; Ciptadi, A.; Rehg, J.M. Multiple hypothesis tracking revisited. In Proceedings of the IEEE ICCV, Santiago, Chile, 11–18 December 2015; pp. 4696–4704. [Google Scholar]
- Seyed, H.R.; Milan, A.; Zhang, Z.; Shi, Q.; Dick, A.; Reid, I. Joint Probabilistic Matching Using m-Best Solutions. In Proceedings of the IEEE CVPR, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 136–145. [Google Scholar]
- Zhang, Y.; Mu, H.; Jiang, Y.; Ding, C.; Wang, Y. Moving Target Tracking Based on Improved GMPHD Filter in Circular SAR System. IEEE Geosci. Remote Sens. Lett. 2019, 16, 559–563. [Google Scholar] [CrossRef]
- Bewley, A.; Ge, Z.Y.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the IEEE ICIP, Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468. [Google Scholar]
- Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the IEEE ICIP, Beijing, China, 17–20 September 2017; pp. 3645–3649. [Google Scholar]
- Chu, Q.; Ouyang, W.; Li, H.; Wang, X.; Liu, B.; Yu, N. Online Multi-Object Tracking Using CNN-based Single Object Tracker with Spatial-Temporal Attention Mechanism. In Proceedings of the IEEE ICCV, Venice, Italy, 22–29 October 2017; pp. 4836–4845. [Google Scholar]
- Zhou, X.-Y.; Koltun, V.; Krähenbühl, P. Tracking objects as points. arXiv 2020, arXiv:2004.01177. [Google Scholar]
- Wang, Y.-X.; Weng, X.; Kitani, K. Joint Detection and Multi-Object Tracking with Graph Neural Networks. arXiv 2020, arXiv:2006.13164. [Google Scholar]
- Guo, Q.; Feng, W.; Zhou, C.; Huang, R.; Wan, L.; Wang, S. Learning Dynamic Siamese Network for Visual Object Tracking. In Proceedings of the IEEE ICCV, Venice, Italy, 22–29 October 2017; pp. 1763–1771. [Google Scholar]
- Mittal, M.; Verma, A.; Kaur, I.; Kaur, B.; Sharma, M.; Goyal, L.M.; Roy, S.; Kim, T.H. An Efficient Edge Detection Approach to Provide Better Edge Connectivity for Image Analysis. IEEE Access 2019, 7, 33240–33255. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, Y. One image segmentation method based on Otsu and fuzzy theory seeking image segment threshold. In Proceedings of the ICECC, Ningbo, China, 9–11 September 2011; pp. 2170–2173. [Google Scholar]
- Cong, R.; Lei, J.; Fu, H.; Cheng, M.M.; Lin, W.; Huang, Q. Review of Visual Saliency Detection with Comprehensive Information. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 2941–2959. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Wu, J.; Zeng, X.; Feng, Z.; Wang, T.; Yan, X.; Wu, Z.Y.; Wu, Q.F.; Huang, Z.Q. Research on Airplane and Ship Detection of Aerial Remote Sensing Images Based on Convolutional Neural Network. Sensors 2020, 20, 4696. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the IEEE CVPR, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE ICCV, Santiago, Chile, 11–18 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE ICCV, Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE CVPR, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. In Proceedings of the IEEE CVPR, Salt Lake City, UT, USA, 18–22 June 2018; arXiv:1804.02767. Available online: https://arxiv.org/abs/1804.02767 (accessed on 5 July 2021).
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot multibox Detector. In Computer Vision—ECCV 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Lin, T.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE ICCV, Venice, Italy, 22–29 October 2017; pp. 318–327. [Google Scholar]
- Zhou, X.Y.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Qiu, H.; Ma, Y.; Li, Z.; Liu, S.; Sun, J. Borderdet: Border Feature for Dense Object Detection. arXiv 2020, arXiv:2007.11056. [Google Scholar]
- Moosbauer, S.; Konig, D.; Jakel, J.; Teutsch, M. A Benchmark for Deep Learning Based Object Detection in Maritime Environments. In Proceedings of the IEEE CVPR, Long Beach, CA, USA, 16–20 June 2019; pp. 916–925. [Google Scholar]
- Prasad, D.K.; Dong, H.; Rajan, D.; Quek, C. Are Object Detection Assessment Criteria Ready for Maritime Computer Vision. IEEE Trans. Intell. Trans. Syst. 2020, 21, 5295–5304. [Google Scholar] [CrossRef] [Green Version]
- Qiao, D.; Liu, G.; Dong, F.; Jiang, S.X.; Dai, L. Marine Vessel Re-Identification: A Large-Scale Dataset and Global-and-Local Fusion-Based Discriminative Feature Learning. IEEE Access 2020, 8, 27744–27756. [Google Scholar] [CrossRef]
- Horn, B.K.; Schunck, B.G. Determining optical flow. Artif. Intell. 1981, 17, 185–203. [Google Scholar] [CrossRef] [Green Version]
- Bruhn, A.; Weickert, J.; Schnörr, C. Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. Int. J. Comput. Vis. 2005, 61, 211–231. [Google Scholar] [CrossRef] [Green Version]
- Goyal, K.; Singhai, J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems. Artif. Intell. 2018, 50, 241–259. [Google Scholar] [CrossRef]
- Omachi, S.; Omachi, M. Fast template matching with polynomials. IEEE Trans. Image Process. 2007, 16, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Lienhart, R.; Maydt, J. An Extended Set of Haar-like Features for Rapid Object Detection. In Proceedings of the IEEE ICIP, Santa Clara, CA, USA, 22–25 September 2002; pp. 900–903. [Google Scholar]
- Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE CVPR, San Diego, CA, USA, 20–25 June 2005. [Google Scholar]
- Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Martin, D.; Häger, G.; Khan, F.; Felsberg, M. Accurate Scale Estimation for Robust Visual Tracking. In Proceedings of the BMCV, Nottingham, UK, 1–5 September 2014; pp. 74–81. [Google Scholar]
- Bochinski, E.; Eiselein, V.; Sikora, T. High-Speed Tracking-by-Detection Without Using Image Information. In Proceedings of the IEEE AVSS, Lecce, Italy, 29 August–1 September 2017. [Google Scholar]
- Zhao, D.W.; Fu, H.; Xiao, L.; Wu, T.; Dai, B. Multi-Object Tracking with Correlation Filter for Autonomous. Sensors 2018, 18, 2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, P.; Ilg, E.; Hausser, P.; Hazirbas, C.; Golkov, V.; Smagt, P.; Cremers, D.; Brox, T. Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE ICCV, Santiago, Chile, 11–18 December 2015; pp. 2758–2766. [Google Scholar]
- Liu, W.Q.; Mu, J.; Liu, G. Multiple Object Tracking with Motion and Appearance Cues. In Proceedings of the IEEE CVPR, Long Beach, CA, USA, 16–20 June 2019; pp. 161–169. [Google Scholar]
- Sun, D.; Yang, X.; Liu, M.Y.; Kautz, J. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. In Proceedings of the IEEE CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8934–8943. [Google Scholar]
- Laura, L.T.; Canton-Ferrer, C.; Schindler, K. Learning by Tracking: Siamese CNN for Robust Target Association. In Proceedings of the IEEE CVPR, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 418–425. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE CVPR, Boston, MA, USA, 7–12 June 2015; pp. 815–821. [Google Scholar]
- Hermans, A.; Beyer, L.; Leibe, B. In Defense of the Triplet Loss for Person Re-Identification. In Proceedings of the IEEE CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 1526–1535. [Google Scholar]
- Xiao, Q.Q.; Luo, H.; Zhang, C. Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification. In Proceedings of the IEEE CVPR, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Son, J.; Baek, M.; Cho, M.; Han, B. Multi-Object Tracking with Quadruplet Convolutional Neural Network. In Proceedings of the IEEE CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 3786–3795. [Google Scholar]
- Ma, C.; Yang, C.; Yang, F.; Zhuang, Y.; Zhang, Z.; Jia, H.; Xie, X. Trajectory factory: Tracklet cleaving and re-connection by deep Siamese bi-gru for multiple object tracking. In Proceedings of the IEEE ICME, San Diego, CA, USA, 23–27 July 2018; pp. 1–6. [Google Scholar]
- Kieritz, H.; Hubner, W.; Arens, M. Joint detection and online multi-object tracking. In Proceedings of the IEEE CVPR, Salt Lake City, UT, USA, 18–22 June 2018; pp. 1540–1548. [Google Scholar]
- Yi, F.; Moon, I. Extended K-Means Algorithm. In Proceedings of the IHMSC, Hangzhou, China, 26–27 August 2013; pp. 263–266. [Google Scholar]
- Wang, G.; Yuan, Y.; Chen, X.; Li, J.; Zhou, X. Learning Discriminative Features with Multiple Granularities for Person Re-Identification. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Korea, 15 October 2018; pp. 274–282. [Google Scholar]
Network Model | 52 × 52 Scale | LossFL | Anchor Setting | AP/% | Tensors |
---|---|---|---|---|---|
YOLOv3(1) | ✓ | 91.32 | 6.4 × 104 | ||
YOLOv3(2) | ✓ | ✓ | 92.77 | 6.2 × 104 | |
YOLOv3(3) | ✓ | 92.09 | 1.7 × 104 | ||
ours | ✓ | ✓ | 93.55 | 1.6 × 104 |
Method | MOTA/% | MOTP/% | IDsw | FPS |
---|---|---|---|---|
SORT | 59.7 | 73.5 | 122 | 13 |
DeepSORT | 62.2 | 72.5 | 65 | 9 |
DeepSORT + MGN | 63.1 | 72.3 | 54 | 9 |
ours | 64.5 | 71.8 | 50 | 21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Cao, C.; Zhou, Y.; Zeng, X.; Feng, Z.; Wu, Q.; Huang, Z. Multiple Ship Tracking in Remote Sensing Images Using Deep Learning. Remote Sens. 2021, 13, 3601. https://doi.org/10.3390/rs13183601
Wu J, Cao C, Zhou Y, Zeng X, Feng Z, Wu Q, Huang Z. Multiple Ship Tracking in Remote Sensing Images Using Deep Learning. Remote Sensing. 2021; 13(18):3601. https://doi.org/10.3390/rs13183601
Chicago/Turabian StyleWu, Jin, Changqing Cao, Yuedong Zhou, Xiaodong Zeng, Zhejun Feng, Qifan Wu, and Ziqiang Huang. 2021. "Multiple Ship Tracking in Remote Sensing Images Using Deep Learning" Remote Sensing 13, no. 18: 3601. https://doi.org/10.3390/rs13183601
APA StyleWu, J., Cao, C., Zhou, Y., Zeng, X., Feng, Z., Wu, Q., & Huang, Z. (2021). Multiple Ship Tracking in Remote Sensing Images Using Deep Learning. Remote Sensing, 13(18), 3601. https://doi.org/10.3390/rs13183601