Contribution of Biophysical Factors to Regional Variations of Evapotranspiration and Seasonal Cooling Effects in Paddy Rice in South Korea
Abstract
:1. Introduction
- (1)
- Field-to-field changes in the FFTD could become an important biophysical factor influencing spatial and temporal variations of ET among paddy fields.
- (2)
- Considering the temperate forest being adjacent to paddy rice planting areas, the monthly Ts of paddy fields may not always be higher than that of the temperate forest.
2. Materials and Methods
2.1. Mapping the Extent of Paddy Rice Using MOD09A1 and National Census Datasets
2.2. Estimations of Phenological Metrics and Daily LAI Time Series in Paddy Fields
2.3. Evaluation and Application of the Pixel-Based RS-PM Model for the ET Estimation in Paddy Fields
2.4. The Monthly Estimation of ΔTs between Paddy Field and Temperate Forest
3. Results
3.1. Spatial Variations of ET in Paddy Fields, South Korea
3.2. Seasonal Variations of ET in Paddy Rice Fields, South Korea
3.3. Spatial Distribution Attributes of Paddy Field FFTDsat in South Korea
3.4. Seasonal Characteristics of ΔTs Between Paddy Rice and Temperate Forest
4. Discussion
4.1. Field-to-Field Variations of FFTDsat Among Paddy Fields
4.2. Spatiotemporal Variations of ET in Paddy Fields
4.3. Human-Induced Seasonal Perturbations of Cooling and Warming Effects in Paddy Fields
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Statistical Database of the Food and Agricultural Organization of the United Nations. 2017. Available online: http://www.fao.org/statistics/en/ (accessed on 25 August 2021).
- Bright, R.M.; Davin, E.L.; Ohalloran, T.L.; Pongratz, J.; Zhao, K.; Cescatti, A. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Datta, S.K. Principles and Practices of Rice Production; IRRI: Los Banos, Philippines, 1981; p. 618. [Google Scholar]
- Sakuratani, T.; Horie, T. Studies on Evapotranspiration from Crops (1) On seasonal changes, varietal differences and the simplified methods of estimate in evapotranspiration of paddy rice. J. Agric. Meteorol. 1985, 41, 45–55. [Google Scholar] [CrossRef]
- Tyagi, N.K.; Sharma, D.K.; Luthra, S.K. Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter. Agric. Water Manag. 2000, 45, 41–54. [Google Scholar] [CrossRef]
- Vu, S.H.; Watanabe, H.; Takagi, K. Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan. Agric. Water Manag. 2005, 76, 195–210. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, Y.; Jia, Z.; Liu, H.; Song, T.; Wang, Y.; Shi, L.; Song, C.; Wang, Y. Effects of the conversion of marshland to crop land on water and energy exchanges in northeastern China. J. Hydrol. 2008, 355, 181–191. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Wassmann, R.; Hirano, T.; Miyata, A.; Hatano, R.; Kumar, A.; Padre, A.; Amante, M. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric. Water Manag. 2011, 98, 1417–1430. [Google Scholar] [CrossRef]
- Alberto, M.C.R.; Buresh, R.J.; Hirano, T.; Miyata, A.; Wassmann, R.; Quilty, J.R.; Correa Jr, T.Q.; Sandro, J. Carbon uptake and water productivity for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation. Field Crop. Res. 2013, 146, 51–65. [Google Scholar] [CrossRef]
- Timm, A.U.; Roberti, D.R.; Streck, N.A.; de Goncalves, L.G.G.; Acevedo, O.C.; Moraes, O.L.L.; Moreira, V.S.; Degrazia, G.A.; Ferlan, M.; Toll, D.L. Energy partitioning and evapotranspiration over a rice paddy in southern Brazil. J. Hydrometeorol. 2014, 15, 1975–1988. [Google Scholar] [CrossRef]
- Nay-Htoon, B.; Xue, W.; Lindner, S.; Cuntz, M.; Ko, J.; Tenhunen, J.; Werner, C.; Dubbert, M. Quantifying differences in water and carbon cycling between paddy and rain fed rice (Oryzasativa L.) by flux partitioning. PLoS ONE 2018, 13, e0195238. [Google Scholar] [CrossRef] [Green Version]
- Diaz, M.B.; Roberti, D.R.; Carneiro, J.V.; Souza, V.D.A.; de Moraes, O.L.L. Dynamics of the superficial fluxes over a flooded rice paddy in southern Brazil. Agric. For. Meteorol. 2019, 276–277, 107650. [Google Scholar] [CrossRef]
- Liu, B.; Cui, Y.; Luo, Y.; Shi, Y.; Liu, M.; Liu, F. Energy partitioning and evapotranspiration over a rotated paddy field in Southern China. Agric. For. Meteorol. 2019, 276–277, 107626. [Google Scholar] [CrossRef]
- Wei, Z.; Lee, X.; Wen, X.; Xiao, W. Evapotranspiration partitioning for three agro-ecosystems with contrasting moisture conditions: A comparison of an isotope method and a two-source model calculation. Agri. For. Meteorol. 2018, 252, 296–310. [Google Scholar] [CrossRef]
- Pookpakdi, A. Sustainable Agriculture for Small-Scale Farmers: A Farming Systems Perspective; Extension Bulletin; Food and Fertilizer Technology Center: Taipei, Taiwan, 1992. [Google Scholar]
- Seo, B.; Bogner, C.; Poppenborg, P.; Martin, E.; Hoffmeister, M.; Jun, M.; Koellner, T.; Reineking, B.; Shope, C.L.; Tenhunen, J. Deriving a per-field land use and land cover map in an agricultural mosaic catchment. Earth Syst. Sci. Data 2014, 6, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Kang, S.; Jang, K.; Lee, H.; Hong, S.; Ko, D. Development of variable threshold models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover. Agric. Water Manag. 2012, 115, 83–91. [Google Scholar] [CrossRef]
- Wang, X.; Ciais, P.; Li, L.; Ruget, F.; Vuichard, N.; Viovy, N.; Zhou, F.; Chang, J.; Wu, X.; Zhao, H. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991–2012. Agric. For. Meteorol. 2017, 233, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cho, G.H.; Ahmad, M.L.; Lee, S.; Choi, K.S.; Nam, W.H.; Kwon, H.J. Influence mechanism of climate change on paddy farming practices and irrigation water demand. Paddy Water Environ. 2019, 17, 359–371. [Google Scholar] [CrossRef]
- Bhuiyan, S.I.; Sattar, M.A.; Khan, M.A.K. Improving water use efficiency in rice through wet seeding. Irrig. Sci. 1995, 16, 1–8. [Google Scholar] [CrossRef]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.; Bala, G.; Mirin, A.; Phillips, T.; Maxwell, R.; Rotman, D. Regional differences in the influence of irrigation on climate. J. Clim. 2009, 22, 2248–2255. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Bu, K.; Yan, F.; Zhang, S. Seasonal local temperature responses to paddy field expansion from rain-fed farmland in the cold and humid Sanjiang Plain of China. Remote Sens. 2018, 10, 2009. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.X.; Liu, T.X. The impact of artificial wetland expansion on local temperature in the growing season—The case study of the Sanjiang Plain, China. Remote Sens. 2019, 11, 2915. [Google Scholar] [CrossRef] [Green Version]
- Pan, T.; Zhang, C.; Kuang, W.; Luo, G.; Du, G.; Yin, Z. Large-scale rain-fed to paddy farmland conversion modified land-surface thermal properties in Cold China. Sci. Total Environ. 2020, 722, 137917. [Google Scholar] [CrossRef]
- Chiueh, Y.-W.; Tan, C.-H.; Hsu, H.-Y. The value of a decrease in temperature by one degree celsius of the regional micro climate—The cooling effect of the paddy field. Atmosphere 2021, 12, 353. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southernChina using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radio metric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation; Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; pp. 1–137. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, X.; Dong, J.W.; Xin, F.F.; Zhang, Y.; Qin, Y.W.; Doughty, R.B.; Moore, B. Fingerprint of rice paddies in spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia. Nat. Commun. 2020, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEET. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Morisette, J.T.; Wolfe, R.E.; Ederer, G.; Pedelty, J.; Masuoka, E.; Myneni, R.; Tan, B.; Nightingale, J. Analgorithm to produce temporally and spatially continuous MODIS-LAI time-series. IEEE Geosci. Remote. Sens. Lett. 2008, 5, 60–64. [Google Scholar] [CrossRef]
- Boschetti, M.; Stroppiana, D.; Brivio, P.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Son, N.; Chen, C.; Chang, L.; Chen, C.; Sobue, S.; Minh, V.; Chiang, S.; Nguyen, L.; Lin, Y.; Dinh, M. A logistic-based method for rice monitoring from multi-temporal MODIS-Lands at fusion data. Eur. J. Remote Sens. 2016, 49, 39–56. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Gonsamo, A.; Gough, C.M.; Chen, J.M.; Xu, S. Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sens. Environ. 2014, 147, 79–88. [Google Scholar] [CrossRef]
- Xue, W.; Lindner, S.; Dubbert, M.; Otieno, D.; Ko, J.; Muraoka, H.; Werner, C.; Tenhunen, J. Supplement understanding of the relative importance of biophysical factors in determination of photosynthetic capacity and photosynthetic productivity inrice ecosystems. Agric. For. Meteorol. 2017, 232, 550–565. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Atzberger, C.; Hogda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODISNDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Gonsamo, A.; Chen, J.M.; Price, D.T.; Kurz, W.A.; Wu, C. Land surface phenology from optical satellite measurement and CO2 eddy covariance technique. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapo transpiration-Guidelines for computing crop water requirements FAO Irrigation and rain age paper 56. Irrig. Drain. 1998, 300, D05109. [Google Scholar]
- Confalonieri, R.; Bregaglio, S.; Rosenmund, A.S.; Acutis, M.; Savin, I. Amodel for simulating the height of rice plants. Eur. J. Agron. 2011, 34, 20–25. [Google Scholar] [CrossRef]
- Yeom, J.M.; Seo, Y.K.; Kim, D.S.; Han, K.S. Solar radiation received by slopes using COMS imagery, aphysically based radiation model, and GLOBE. J. Sens. 2016, 2016, 4834579. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.; Ko, J.; Yeom, J.M. National wide projection of rice yield using a crop model integrated with geostationary satellite imagery: A case study in South Korea. Remote Sens. 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Abers, S.C.; McGinley, J.A.; Birkenheour, D.L.; Smart, J.R. The Local Analysis and Prediction System: Analysis of clouds, precipitation, and temperature. Weather Forecast 1996, 11, 273–287. [Google Scholar] [CrossRef] [Green Version]
- Kurmangozhnov, A.; Xue, W.; Li, X.; Zeng, F.; Sabit, R.; Tusun, T. High biomass production with abundant leaf litter falliscritical to amelio rating soil quality and productivity in reclaimed sandy desertification land. J. Environ. Manag. 2020, 263, 110373. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundationfor Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 25 August 2021).
- Bouman, B.A.M.; Tuong, T.P. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Choi, I.C.; Shin, H.J.; Nguyen, T.T.; Tenhunen, J. Water policy reforms in South Korea: A historical review and ongoing challenges for sustainable water governance and management. Water 2017, 9, 717. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S. Rice Crop Science; The International Rice Research Institute: Manila, Philippines, 1981; p. 279. [Google Scholar]
- Organisation for Economic Co-operationand Development (OECD). 2018. Available online: https://data.oecd.org/agrpolicy/agricultural-support.htm (accessed on 25 August 2021).
- Xie, H.J.; Han, Y.H.; Li, X.L.; Dai, W.M.; Song, X.L.; Olsen, K.M.; Qiang, S. Climate-depend entvariation in cold tolerance of weedy rice and rice mediated by OsICE1 promoter methylation. Mol. Ecol. 2019, 29, 121–137. [Google Scholar] [CrossRef]
- Han, H.; Cui, Y.; Wang, S.; Duan, Q.; Zhang, L. Impacts of the channel/barrier effect and three-dimension alclimate-A case study of rice water requirement and irrigation quota in Yunnan, China. Agric. Water Manag. 2019, 212, 317–327. [Google Scholar] [CrossRef]
- Cleland, E.E.; Chuine, I.; Menzel, A.; Mooney, H.A.; Schwartz, M.D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 2007, 22, 357–365. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Kropff, M.J.; Tuong, T.P.; Wopereis, M.C.S.; Berge, H.F.M.; Laar, H.H. Oryza 2000: Modeling Lowland Rice; IRRI: Los Baños, Philippines, 2001; p. 241. [Google Scholar]
- Hemes, K.S.; Eichelmann, E.; Chamberlain, S.D.; Knox, S.H.; Oikawa, P.Y.; Sturtevant, C.; Verfaillie, J.; Szutu, D.; Baldocchi, D.D. Aunique combination of aerodynamic and surface properties contribute to surface cooling in restored wetlands of the Sacramento-San Joaquin Delta, California. J. Geophys. Res. Biogeo. 2018, 123, 2072–2090. [Google Scholar] [CrossRef]
- Christy, J.R.; Norris, W.B.; Redmond, K.; Gallo, K.P. Methodology and results of calculating central California surface temperature trends: Evidence of human-induced climate change? J. Clim. 2006, 19, 548–563. [Google Scholar] [CrossRef] [Green Version]
Scenario 1: ra | Scenario 2: rs | Scenario 3: Kcb | ||||||
---|---|---|---|---|---|---|---|---|
20 | 60 | 120 | 50 | 120 | 240 | 0.58 | 0.30 | |
Tdaytime = 20 °C Tnight = 15 °C | 4.09 | 3.92 | 3.68 | 4.01 | 3.82 | 3.67 | 3.82 | 1.91 |
Tdaytime = 25 °C Tnight = 20 °C | 4.20 | 4.03 | 3.82 | 4.42 | 4.22 | 4.05 | 4.22 | 2.23 |
Tdaytime = 30 °C Tnight = 25 °C | 4.17 | 4.02 | 3.82 | 4.80 | 4.59 | 4.40 | 4.59 | 2.29 |
Tdaytime = 35 °C Tnight = 30 °C | 4.02 | 3.88 | 3.71 | 5.15 | 4.94 | 4.73 | 4.94 | 2.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Jeong, S.; Ko, J.; Yeom, J.-M. Contribution of Biophysical Factors to Regional Variations of Evapotranspiration and Seasonal Cooling Effects in Paddy Rice in South Korea. Remote Sens. 2021, 13, 3992. https://doi.org/10.3390/rs13193992
Xue W, Jeong S, Ko J, Yeom J-M. Contribution of Biophysical Factors to Regional Variations of Evapotranspiration and Seasonal Cooling Effects in Paddy Rice in South Korea. Remote Sensing. 2021; 13(19):3992. https://doi.org/10.3390/rs13193992
Chicago/Turabian StyleXue, Wei, Seungtaek Jeong, Jonghan Ko, and Jong-Min Yeom. 2021. "Contribution of Biophysical Factors to Regional Variations of Evapotranspiration and Seasonal Cooling Effects in Paddy Rice in South Korea" Remote Sensing 13, no. 19: 3992. https://doi.org/10.3390/rs13193992