A New Threshold-Based Method for Extracting Canopy Temperature from Thermal Infrared Images of Cork Oak Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Acquisition of TIR Images
2.3. Thermocouple Temperature Observation
2.4. Data Processing
2.4.1. Determining the Temperature Segmentation Threshold Using Visual Interpretation
2.4.2. Calculation of the Tc Using the Direct Extraction Method
2.4.3. Calculation of the Tc Using the Otsu Algorithm
2.4.4. Calculation of Tc Using the Temperature Threshold Method
2.4.5. Accuracy Evaluation
3. Results
3.1. Temperature Threshold Method
3.1.1. Variation Characteristics of the Taverage with the CNOP
3.1.2. Determination of the Segmentation Threshold
3.2. Comparing the Performance of the Temperature Threshold Method, the Otsu Algorithm, and the Direct Extraction Method in Relation to Tc Extraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Code for the MATLAB that Describes the Temperature Threshold Method
1: clear |
2: clc |
3: subfolder1=‘excel’; %read file |
4: search1=‘\*.xlsx’; |
5: d1=dir(fullfile(cd,[subfolder1 search1])); |
6: i1=regexp({d1.name},’xlsx’); |
7: d1={d1(~cellfun(‘isempty’,i1)).name}; |
8: r1=size(d1,1); |
9: path1=strcat(subfolder1,’\’); |
10: for N=1:r1 |
11: temp=[path1,d1{1,N}]; |
12: Temp=xlsread(temp); |
13: AR=tabulate(Temp(:)); % arranges the Tpixel data from the Excel table |
14: T=AR(:,1); % obtain each Tpixel data in the image |
15: Npix=AR(:,2); % obtains the number of pixels corresponding to each temperature in the image |
16: Cpix=cumsum(AR(:,2)); % Calculate the CNOP |
17: ST=T.* Npix; |
18: L=length(T(:,1)); |
19: for i=1:L |
20: U(i,1)=sum(ST (1:i,1)); |
21: end |
22: AT=U./ Cpix; % Calculate the Taverage |
23: plot(AT, Cpix); |
24: DATA1= AT ‘; |
25: NT=mapminmax(DATA1,0,1)’; % Normalize the Taverage |
26: DATA2= Cpix ‘; |
27: Ncpix=mapminmax(DATA2,0,1)’; % Normalize the CNOP |
28: p=log(1./ Ncpix -1); |
29: L=length(AT (:,1)); |
30: C=polyfit( NT(2:L-1,1),p(2:L-1,1),1); % Calculate the initial value required to fit the logistic curve |
31: B=C(1,1); |
32: A=C(1,2); |
33: W=2.71828^(A); |
34: Q=-B; |
35: x= NT; |
36: y= Ncpix; |
37: f=fittype(‘a/(1 + b*exp(-k*x))’,’independent’,’x’,’coefficients’,{‘a’,’b’,’k’}); % the logistic equation fitting of the curve |
38: options = fitoptions(f); |
39: options.StartPoint=[1 W Q]; |
40: cfun=fit(x,y,f,options) ; |
41: xi=0:0.0001:1; |
42: yi=cfun(xi); |
43: plot(x,y,’r*’,xi,yi,’b-’); |
44: a=cfun.a; |
45: b=cfun.b; |
46: k=cfun.k; |
47: syms X |
48: Y = a/(1 + b*exp(-k*X)); |
49: df1=diff(Y,X,1); % |
50: X1=solve(df1==0.5,X); % Find the normalized Taverage corresponding to the point where the first derivative is 0.5 in the fitting equation |
51: out1=eval(X1); |
52: MAX=max(AT (:,1)); |
53: MIN=min(AT (:,1)); |
54: Thr=min(out1(:,1))*(MAX-MIN)+MIN; %Calculate the Taverage corresponding to the point where the first derivative is 0.5, in the fitting equation |
55: [r,c]=find(AT<Thr); |
56: rlength=length(r(:)); |
57: Threshold=T(rlength,1); % converts the Taverage to Tpixel, and obtain the segmentation threshold |
58: G(N,1)= Threshold; |
59: [row,col]=find(Temp> Threshold); %find the coordinates of the canopy pixels whose temperature is higher than the segmentation threshold |
60: rowslength=length(row(:)); |
61: for i=1:rowslength |
62: D(i)=Temp(row(i),col(i)); % find the temperature corresponding to the coordinates End |
63: TempMean(N,1)=mean(D); %obtain the TC |
64: clear D |
65: clear U |
66: end |
References
- Blonquist, J.M.; Norman, J.M.; Bugbee, B. Automated measurement of canopy stomatal conductance based on infrared temperature. Agric. Meteorol. 2009, 149, 2183–2197. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Kustas, W.P.; Caselles, V.; Anderson, M.C. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ. 2008, 112, 1130–1143. [Google Scholar] [CrossRef]
- Liu, N.; Deng, Z.; Wang, H.; Luo, Z.; Gutiérrez-Jurado, H.A.; He, X.; Guan, H. Thermal remote sensing of plant water stress in natural ecosystems. For. Ecol. Manag. 2020, 476, 118433. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Costa, J.M.; Egipto, R.; Durán-Zuazo, V.H.; Lima, R.S.N.; Lopes, C.M.; Chaves, M.M. Thermal data to monitor crop-water status in irrigated Mediterranean viticulture. Agric. Water Manag. 2016, 176, 80–90. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Hernández, A.; Padilla-Díaz, C.M.; Diaz-Espejo, A.; Fernández, J.E. Assessing plant water status in a hedgerow olive orchard from thermography at plant level. Agric. Water Manag. 2017, 188, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Idso, S.B. Nonwaterstressed baselines a key to measuring and interpreting plant water stress. Agric. Meteorol. 1982, 27, 59–70. [Google Scholar] [CrossRef]
- Khorsandi, A.; Hemmat, A.; Mireei, S.A.; Amirfattahi, R.; Ehsanzadeh, P. Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agric. Water Manag. 2018, 204, 222–233. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2012, 3, 52–58. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–151448. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Still, C.J.; Roberts, D.A.; Goulden, M.L. Thermal infrared imaging of conifer leaf temperatures: Comparison to thermocouple measurements and assessment of environmental influences. Agric. For. Meteorol. 2018, 248, 361–371. [Google Scholar] [CrossRef]
- Kim, Y.; Still, C.J.; Hanson, C.V.; Kwon, H.; Greer, B.T.; Law, B.E. Canopy skin temperature variations in relation to climate, soil temperature, and carbon flux at a ponderosa pine forest in central Oregon. Agric. For. Meteorol. 2016, 226, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A review of imaging techniques for plant phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Sankaran, S.; Maja, J.M.; Buchanon, S.; Ehsani, R. Huanglongbing (citrus greening) detection using visible, near infrared and thermal imaging techniques. Sensors 2013, 13, 2117–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Tejero, I.; Durán-Zuazo, V.H.; Arriaga, J.; Hernández, A.; Vélez, L.M.; Muriel-Fernández, J.L. Approach to assess infrared thermal imaging of almond trees under water-stress conditions. Fruits 2012, 67, 463–474. [Google Scholar] [CrossRef]
- Han, W.T.; Zhang, L.Y.; Niu, Y.X.; Shi, X. Review on UAV Remote Sensing Application in Precision Irrigation. Trans. CSAE 2020, 51, 1–14. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, Y.; Zhang, H.; Han, W.; Li, G.; Tang, J.; Peng, X. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring. Front. Plant Sci. 2019, 10, 1270. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farias, S.; Ryu, D. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Sensors 2018, 18, 397. [Google Scholar] [CrossRef] [Green Version]
- Meron, M.; Sprintsin, M.; Tsipris, J.; Alchanatis, V.; Cohen, Y. Foliage temperature extraction from thermal imagery for crop water stress determination. Precis. Agric. 2013, 14, 467–477. [Google Scholar] [CrossRef]
- Zhang, Z.; Bian, J.; Han, W.; Fu, Q.; Chen, S.; Cui, T. Diagnosis of cotton water stress using unmanned aerial vehicle thermal infrared remote sensing after removing soil. Trans. CSAE 2018, 49, 250–260. [Google Scholar] [CrossRef]
- Schiewe, J. Segmentation of high-resolution remotely sensed data-concepts, applications and problems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2002, 34, 380–385. [Google Scholar]
- Räsänen, A.; Rusanen, A.; Kuitunen, M.; Lensu, A. What makes segmentation good? A case study in boreal forest habitat mapping. Int. J. Remote Sens. 2013, 34, 8603–8627. [Google Scholar] [CrossRef]
- Maini, R.; Aggarwal, H. Study and comparison of various image edge detection techniques. Int. J. Image Process. (IJIP) 2009, 3, 1–11. [Google Scholar]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified Evaluation of CottonWater Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Ludovisi, R.; Tauro, F.; Salvati, R.; Khoury, S.; Scarascia, G.M.; Harfouche, A. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought. Front. Plant Sci. 2017, 8, 1681. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.F.; Zhou, Y.; Hu, M.J.; Wang, F.; Huang, H.; Zhang, J.S. The Links between Canopy Solar-Induced Chlorophyll Fluorescence and Gross Primary Production Responses to Meteorological Factors in the Growing Season in Deciduous Broadleaf Forest. Remote Sens. 2021, 13, 2363. [Google Scholar] [CrossRef]
- Wang, Q.; Li, M.W.; Li, Q.; Chen, J.L.; Yang, X.T.; Kou, Y.B.; Zhang, J.S. Drought stress indexes of soil with different texture based on chlorophyll fluorescence parameters of Quercus variabilis seedling. Sci. Soil Water Conserv. 2021, 19, 27–32. [Google Scholar] [CrossRef]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; Hernández-Montes, E.; O’Connell, M. Adaptive Estimation of Crop Water Stress in Nectarine and Peach Orchards Using High-Resolution Imagery from an Unmanned Aerial Vehicle (UAV). Remote Sens. 2017, 9, 828. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Chen, J.Y.; Zhou, Y.C.; Cui, W.X.; Yang, N. A Study on the Method of UAV Thermal Infrared Remote Sensing to Retrieve Soil Moisture Content in Corn Root Zone. Water Sav. Irrig. 2021, 3, 12–18. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, L.Q.; Wang, P.S.; Cao, J.; Chen, J.L.; Zhang, J.S.; Kou, Y.B. Series lines of climate space up limit of Quercus variabilis seedlings in static wind and different soil water stress. Sci. Soil Water Conserv. 2017, 15, 73–80. [Google Scholar] [CrossRef]
Different slopes in the curve | ||||||||||
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | |
RMSE | 0.6383 | 0.4064 | 0.2903 | 0.2348 | 0.2314 | 0.2636 | 0.3136 | 0.3710 | 0.4301 | 0.4900 |
R2 | 0.9529 | 0.9809 | 0.9902 | 0.9936 | 0.9938 | 0.9919 | 0.9886 | 0.9841 | 0.9786 | 0.97231 |
TRE | 1.8578 | 1.0387 | 0.5456 | 0.1707 | −0.1412 | −0.4111 | −0.6537 | −0.8775 | −1.0853 | −1.2818 |
MAE | 0.5402 | 0.3242 | 0.2254 | 0.1834 | 0.1800 | 0.2020 | 0.2448 | 0.2981 | 0.3524 | 0.4067 |
SLOPE | 0.9814 | 0.9894 | 0.9943 | 0.9981 | 1.0012 | 1.0039 | 1.0064 | 1.0087 | 1.0109 | 1.0129 |
Different slopes in the curve | ||||||||||
1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2 | |
RMSE | 0.5504 | 0.6111 | 0.6722 | 0.7354 | 0.8063 | 0.8743 | 0.9418 | 1.0115 | 1.0804 | 1.1532 |
R2 | 0.9650 | 0.9569 | 0.9478 | 0.9376 | 0.925 | 0.9118 | 0.8976 | 0.8819 | 0.8653 | 0.8465 |
TRE | −1.4710 | −1.6552 | −1.8339 | −2.0134 | −2.1987 | −2.3823 | −2.5694 | −2.7643 | −2.9578 | −3.1589 |
MAE | 0.4601 | 0.51251 | 0.5641 | 0.6167 | 0.6712 | 0.7260 | 0.7822 | 0.8411 | 0.9001 | 0.9619 |
SLOPE | 1.0149 | 1.0168 | 1.0187 | 1.0206 | 1.0226 | 1.0245 | 1.0265 | 1.0286 | 1.0307 | 1.0329 |
Different slopes in the curve | ||||||||||
2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | 3 | |
RMSE | 1.2224 | 1.2868 | 1.3509 | 1.4036 | 1.4532 | 1.4906 | 1.5172 | 1.5369 | 1.5534 | 1.5685 |
R2 | 0.8276 | 0.8089 | 0.7894 | 0.7726 | 0.7563 | 0.7436 | 0.7343 | 0.7274 | 0.7215 | 0.7161 |
TRE | −3.3525 | −3.5391 | −3.7214 | −3.8828 | −4.0323 | −4.1532 | −4.2493 | −4.3223 | −4.3820 | −4.4329 |
MAE | 1.0218 | 1.0798 | 1.1366 | 1.1870 | 1.2341 | 1.2723 | 1.3028 | 1.3259 | 1.3450 | 1.3612 |
SLOPE | 1.035 | 1.037 | 1.039 | 1.0408 | 1.0424 | 1.0438 | 1.0448 | 1.0456 | 1.0463 | 1.0468 |
Extraction Method | Thermocouple Temperature Observation | ||||
---|---|---|---|---|---|
R2 | TRE | RMSE | MAE | SLOPE | |
The temperature threshold method | 0.9323 ** | 0.6131 | 0.7688 | 0.5157 | 0.9932 |
The Otsu algorithm | 0.8521 ** | −2.5183 | 1.1330 | 0.9616 | 1.0257 |
The direct extraction method | 0.9284 ** | 0.8100 | 0.7904 | 0.5603 | 0.9912 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Xie, Y.; Gao, X.; Cheng, X.; Huang, H.; Zhang, J. A New Threshold-Based Method for Extracting Canopy Temperature from Thermal Infrared Images of Cork Oak Plantations. Remote Sens. 2021, 13, 5028. https://doi.org/10.3390/rs13245028
Liu L, Xie Y, Gao X, Cheng X, Huang H, Zhang J. A New Threshold-Based Method for Extracting Canopy Temperature from Thermal Infrared Images of Cork Oak Plantations. Remote Sensing. 2021; 13(24):5028. https://doi.org/10.3390/rs13245028
Chicago/Turabian StyleLiu, Linqi, Yingchao Xie, Xiang Gao, Xiangfen Cheng, Hui Huang, and Jinsong Zhang. 2021. "A New Threshold-Based Method for Extracting Canopy Temperature from Thermal Infrared Images of Cork Oak Plantations" Remote Sensing 13, no. 24: 5028. https://doi.org/10.3390/rs13245028