Grounding Event of Iceberg D28 and Its Interactions with Seabed Topography
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Remote Sensing Data
2.2.1. Satellite Images
2.2.2. Altimetry Data
2.3. Environmental Parameters
3. Methods
3.1. Iceberg Draft from Satellite Altimetry
3.2. Determination of Grounding Points
3.3. Wind and Sea Water Velocities
4. Results
4.1. Iceberg Thickness and Draft
4.2. Location of Grounding Points
4.3. Wind and Sea Water Velocities of the Study Area
5. Discussion
5.1. Iceberg Draft Estimation
5.2. Seabed Topography Revealed by the Maximum Water Depths at Grounding Points
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodworth-Lynas, C.M.T.; Josenhans, H.W.; Barrie, J.V.; Lewis, C.F.M.; Parrott, D.R. The physical processes of seabed disturbance during iceberg grounding and scouring. Cont. Shelf Res. 1991, 11, 939–961. [Google Scholar] [CrossRef]
- MacAyeal, D.R.; Okal, M.H.; Thom, J.E.; Brunt, K.M.; Kim, Y.-J.; Bliss, A.K. Tabular iceberg collisions within the coastal regime. J. Glaciol. 2008, 54, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Bigg, G.R.; Wadley, M.R.; Stevens, D.P.; Johnson, J.A. Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol. 1997, 26, 113–135. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.I.; Landva, J. Geotechnical aspects of seabed pits in the Grand Banks area. Can. Geotech. J. 1988, 25, 448–454. [Google Scholar] [CrossRef]
- McKenna, R.; King, T.; Crocker, G.; Bruneau, S.; German, P. Modelling iceberg grounding on the grand banks. In Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC, Delft, The Netherlands, 9–19 June 2019. [Google Scholar]
- Kuijpers, A.; Dalhoff, F.; Brandt, M.P.; Hümbs, P.; Schott, T.; Zotova, A. Giant iceberg plow marks at more than 1 km water depth offshore West Greenland. Mar. Geol. 2007, 246, 60–64. [Google Scholar] [CrossRef]
- Gebhardt, A.C.; Jokat, W.; Niessen, F.; Matthiessen, J.; Geissler, W.H.; Schenke, H.W. Ice sheet grounding and iceberg plow marks on the northern and central Yermak Plateau revealed by geophysical data. Quat. Sci. Rev. 2011, 30, 1726–1738. [Google Scholar] [CrossRef] [Green Version]
- Normandeau, A.; MacKillop, K.; Macquarrie, M.; Richards, C.; Bourgault, D.; Campbell, D.C.; Maselli, V.; Philibert, G.; Clarke, J.H. Submarine landslides triggered by iceberg collision with the seafloor. Nat. Geosci. 2021, 14, 599–605. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Fleming, A.; Sands, C.J.; Quartino, M.L.; Deregibus, D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170176. [Google Scholar] [CrossRef] [Green Version]
- Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 2001, 24, 553–564. [Google Scholar] [CrossRef]
- Teixido, N.; Garrabou, J.; Gutt, J.; Arntz, W.E. Iceberg disturbance and successional spatial patterns: The case of the shelf Antarctic benthic communities. Ecosystems 2007, 10, 142–157. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Souster, T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat. Clim. Chang. 2011, 1, 365–368. [Google Scholar] [CrossRef]
- Wagner, T.J.W.; Dell, R.W.; Eisenman, I.; Dell, R.W.; Wagner, T.J.W.; Dell, R.W.; Eisenman, I. An Analytical Model of Iceberg Drift. J. Phys. Oceanogr. 2017, 47, 1605–1616. [Google Scholar] [CrossRef]
- Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Remy, F. Large icebergs characteristics from altimeter waveforms analysis. J. Geophys. Res. 2015, 120, 1954–1974. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, X.; Hui, F.; Wang, F.; Chi, Z. Antarctic iceberg calving monitoring based on EnviSat ASAR images. Yaogan Xuebao J. Remote Sens. 2013, 17, 479–494. [Google Scholar]
- Ballantyne, J.; Long, D.G. A multidecadal study of the number of antarctic icebergs using scatterometer data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 3029–3031. [Google Scholar]
- Budge, J.; Long, D. Estimating Sizes and Rotation Angles of Antarctic Icebergs Utilizing Scatterometer Data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 4 December 2017; pp. 3585–3588. [Google Scholar]
- Luckman, A.; Padman, L.; Jansen, D. Persistent iceberg groundings in the western Weddell Sea, Antarctica. Remote Sens. Environ. 2010, 114, 385–391. [Google Scholar] [CrossRef]
- Li, T.T.; Shokr, M.; Liu, Y.; Cheng, X.; Li, T.T.; Wang, F.; Hui, F. Monitoring the tabular icebergs C28A and C28B calved from the Mertz Ice Tongue using radar remote sensing data. Remote Sens. Environ. 2018, 216, 615–625. [Google Scholar] [CrossRef]
- Abe, T.; Ohki, M.; Tadono, T. Observation of Huge Iceberg Detachment from Larsen-C Ice Shelf in Antarctic Peninsula by Alos-2/Palsar-2. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 5 November 2018; pp. 5172–5175. [Google Scholar]
- Hawkins, J.D.; Laxon, S.; Phillips, H. Antarctic Tabular Iceberg MultiSensor Mapping. In Proceedings of the IGARSS’91 Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991. [Google Scholar]
- Han, H.; Lee, S.; Kim, J.I.; Kim, S.H.; Kim, H.C. Changes in a Giant Iceberg Created from the Collapse of the Larsen C Ice Shelf, Antarctic Peninsula, Derived from Sentinel-1 and CryoSat-2 Data. Remote Sens. 2019, 11, 404. [Google Scholar] [CrossRef] [Green Version]
- Braakmann-Folgmann, A.; Shepherd, A.; Ridout, A. Tracking changes in the area, thickness, and volume of the Thwaites tabular iceberg “B30” using satellite altimetry and imagery. Cryosphere 2021, 15, 3861–3876. [Google Scholar] [CrossRef]
- Jacobs, S.S. On the nature and significance of the Antarctic Slope Front. Mar. Chem. 1991, 35, 9–24. [Google Scholar] [CrossRef]
- Nakayama, Y.; Ohshima, K.I.; Matsumura, Y.; Fukamachi, Y.; Hasumi, H. A numerical investigation of formation and variability of Antarctic bottom water off Cape Darnley, East Antarctica. J. Phys. Oceanogr. 2014, 44, 2921–2937. [Google Scholar] [CrossRef]
- Thompson, A.F.; Stewart, A.L.; Spence, P.; Heywood, K.J. The Antarctic Slope Current in a Changing Climate. Rev. Geophys. 2018, 56, 741–770. [Google Scholar] [CrossRef]
- Stewart, A.L.; Klocker, A.; Menemenlis, D. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation. Geophys. Res. Lett. 2018, 45, 834–845. [Google Scholar] [CrossRef] [Green Version]
- Delpeche-Ellmann, N.; Soomere, T.; Kudryavtseva, N. The role of nearshore slope on cross-shore surface transport during a coastal upwelling event in Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci. 2018, 209, 123–135. [Google Scholar] [CrossRef]
- St-Laurent, P.; Klinck, J.M.; Dinniman, M.S. On the role of coastal troughs in the circulation of warm circumpolar deep water on Antarctic shelves. J. Phys. Oceanogr. 2013, 43, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Ott, N.; Schenke, H.W. International Bathymetric Chart of the Southern Ocean (IBCSO). In Proceedings of the SCAR/IASC/IPY Open Science Conference, St. Petersburg, Russia, 8–11 July 2008. [Google Scholar]
- Schaffer, J.; Timmermann, R.; Erik Arndt, J.; Savstrup Kristensen, S.; Mayer, C.; Morlighem, M.; Steinhage, D. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst. Sci. Data 2016, 8, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.G.; Bamber, J.L.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Liu, Y.; Cheng, X.; Ouyang, L.X.; Li, X.Q.; Liu, J.P.; Shokr, M.; Hui, F.M.; Zhang, J.; Wen, J. The effect of seafloor topography in the Southern Ocean on tabular iceberg drifting and grounding. Sci. China Earth Sci. 2017, 60, 697–706. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.Ö.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Mcmillan, M.; Shepherd, A.; Sundal, A.; Briggs, K.; Muir, A.; Ridout, A.; Hogg, A.; Wingham, D. Increased ice losses from Antarctica detected by CryoSat-2. Geophys. Res. Lett. 2014, 41, 3899–3905. [Google Scholar] [CrossRef]
- Meloni, M.; Bouffard, J.; Parrinello, T.; Dawson, G.; Garnier, F.; Helm, V.; Di Bella, A.; Hendricks, S.; Ricker, R.; Webb, E.; et al. CryoSat Ice Baseline-D validation and evolutions. Cryosphere 2020, 14, 1889–1907. [Google Scholar] [CrossRef]
- Quartly, G.D.; Nencioli, F.; Raynal, M.; Bonnefond, P.; Garcia, P.N.; Garcia-Mondéjar, A.; de la Cruz, A.F.; Cretaux, J.F.; Taburet, N.; Frery, M.L.; et al. The roles of the S3MPC: Monitoring, validation and evolution of sentinel-3 altimetry observations. Remote Sens. 2020, 12, 1763. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 2019, 12, 1763. [Google Scholar] [CrossRef] [Green Version]
- Dowdeswell, J.A.; Bamber, J.L. Keel depths of modern Antarctic icebergs and implications for sea-floor scouring in the geological record. Mar. Geol. 2007, 243, 120–131. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Roberts, M. MOHC HadGEM3-GC31-HH Model Output Prepared for CMIP6 HighResMIP Highres-Future, Version 20200731. Earth System Grid Federation. 2019. Available online: https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.HighResMIP.MOHC.HadGEM3-GC31-HH.highres-future (accessed on 23 December 2021). [CrossRef]
- Morlighem, M.; Rignot, E.; Binder, T.; Blankenship, D.; Drews, R.; Eagles, G.; Eisen, O.; Ferraccioli, F.; Forsberg, R.; Fretwell, P.; et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet. Nat. Geosci. 2020, 13, 132–137. [Google Scholar] [CrossRef]
- Padman, L.; Fricker, H.A.; Coleman, R.; Howard, S.; Erofeeva, L. A new tide model for the Antarctic ice shelves and seas. Ann. Glaciol. 2002, 34, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice Flow of the Antarctic Ice Sheet. Science 2011, 333, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Mouginot, J.; Scheuchl, B.; Rignot, E.; Scheuch, B.; Rignot, E. Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data. Remote Sens. 2012, 4, 2753–2767. [Google Scholar] [CrossRef] [Green Version]
- Förste, C.; Bruinsma, S.; Abrikosov, O.; Flechtner, F.; Marty, J.-C.; Lemoine, J.-M.; Dahle, C.; Neumayer, H.; Barthelmes, F.; König, R.; et al. EIGEN-6C4—The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 27 April–2 May 2014; p. 3707. [Google Scholar]
- Knudsen, P.; Andersen, O.B.; Maximenko, N. The updated geodetic mean dynamic topography model—DTU15MDT. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Chuter, S.J.; Bamber, J.L. Antarctic ice shelf thickness from CryoSat-2 radar altimetry. Geophys. Res. Lett. 2015, 42, 10721–10729. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Jezek, K.C.; Csathó, B.M.; Herzfeld, U.C.; Farness, K.L.; Huybrechts, P. Mass budgets of the Lambert, Mellor and Fisher Glaciers and basal fluxes beneath their flowbands on Amery Ice Shelf. Sci. China Ser. D Earth Sci. 2007, 50, 1693–1706. [Google Scholar] [CrossRef] [Green Version]
- Weinhart, A.H.; Freitag, J.; Hörhold, M.; Kipfstuhl, S.; Eisen, O. Representative surface snow density on the East Antarctic Plateau. Cryosphere 2020, 14, 3663–3685. [Google Scholar] [CrossRef]
- Craven, M.; Allison, I.; Fricker, H.A.; Warner, R. Properties of a marine ice layer under the Amery Ice Shelf, East Antarctica. J. Glaciol. 2009, 55, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Romanov, Y.A.; Romanova, N.A.; Romanov, P. Shape and size of Antarctic icebergs derived from ship observation data. Antarct. Sci. 2011, 24, 77–87. [Google Scholar] [CrossRef]
- Bigg, G.R. Icebergs: Their Science and Links to Global Change; Cambridge University Press (CUP): Cambridge, UK, 2015; ISBN 9781107067097. [Google Scholar]
- Jansen, D.; Sandhäger, H.; Rack, W. Model experiments on large tabular iceberg evolution: Ablation and strain thinning. J. Glaciol. 2005, 51, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Jansen, D.; Schodlok, M.; Rack, W. Basal melting of A-38B: A physical model constrained by satellite observations. Remote Sens. Environ. 2007, 111, 195–203. [Google Scholar] [CrossRef]
- Jacka, T.H.; Giles, A.B. Antarctic iceberg distribution and dissolution from ship-based observations. J. Glaciol. 2007, 53, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Hancock, D.; Harbeck, K.; Roberts, L.; Neumann, T.; Brunt, K.; Fricker, H.; Gardner, A.; Siegfried, M.; Adusumilli, S. Algorithm Theoretical Basis Document (ATBD) for Land Ice Along-Track Height Product (ATL06). In ICE, CLOUD, and Land Elevation Satellite-2 (ICESat-2) Project; Goddard Space Flight Center: Greenbelt, MA, USA, 2019. [Google Scholar]
- Enderlin, E.M.; Hamilton, G.S. Estimates of iceberg submarine melting from high-resolution digital elevation models: Application to Sermilik Fjord, East Greenland. J. Glaciol. 2017, 60, 1084–1092. [Google Scholar] [CrossRef] [Green Version]
Number of Points | Std (m) | ||
---|---|---|---|
ICESat-2–Cryosat-2 | 5663 | 0.78 | 0.81 |
ICESat-2–Sentinel-3 | 6182 | 0.49 | 1.15 |
Sentinel-3–Cryosat-2 | 239 | −0.21 | 1.59 |
Date | Min Speed (m/day) | Max Speed (m/day) | No. of Grounding Point |
---|---|---|---|
6 August–10 August | 365.7 ± 20 | 721.5 ± 20 | − |
10 August–14 August | 21.5 ± 72.5 | 2482.5 ± 72.5 | 1 |
14 August–18 August | 17.9 ± 72.5 | 1692.5 ± 72.5 | 2 |
18 August–22 August | 306.2 ± 20 | 400.2 ± 20 | − |
22 August–26 August | 252.4 ± 72.5 | 613.7 ± 72.5 | − |
26 August–30 August | 2.8 ± 72.5 | 1136.7 ± 72.5 | 3 |
30 August–3 September | 3.2 ± 20 | 577.5 ± 20 | 4 |
3 September–7 September | 8.1 ± 72.5 | 2281.4 ± 72.5 | 5 |
7 September–11 September | 40.7 ± 72.5 | 3982.8 ± 72.5 | 6 |
11 September–15 September | 18.4 ± 20 | 1996.0 ± 20 | 7 |
No. | (m) | ||||
---|---|---|---|---|---|
1 | 227.35 ± 22.10 | −356 | 149.09 | −451.55 | 244.64 |
2 | 269.42 ± 25.66 | −776 | 527.02 | −626.65 | 377.67 |
3 | 221.72 ± 21.77 | −158 | −43.28 | −280.27 | 78.99 |
4 | 229.77 ± 22.50 | −463 | 253.67 | −436.28 | 226.95 |
5 | 263.48 ± 25.15 | −505 | 261.96 | −517.49 | 274.45 |
6 | 250.82 ± 24.23 | −385 | 154.62 | −460.57 | 230.19 |
7 | 251.20 ± 24.21 | −831 | 600.24 | −542.14 | 311.38 |
No. | |||||
---|---|---|---|---|---|
1 | 32.01 ± 3.38 | −356 | 344.43 | −451.55 | 439.98 |
2 | 326.90 ± 31.58 | −776 | 469.54 | −626.65 | 320.18 |
3 | 40.17 ± 4.08 | −158 | 138.27 | −280.27 | 260.54 |
4 | 13.40 ± 1.99 | −463 | 470.04 | −436.28 | 443.3 |
5 | 244.32 ± 23.62 | −505 | 281.12 | −517.49 | 293.62 |
6 | 109.96 ± 10.72 | −385 | 295.48 | −460.57 | 371.05 |
7 | 240.82 ± 23.29 | −831 | 610.62 | −542.14 | 321.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Cheng, X.; Liang, Q.; Li, T.; Peng, F.; Chi, Z.; He, J. Grounding Event of Iceberg D28 and Its Interactions with Seabed Topography. Remote Sens. 2022, 14, 154. https://doi.org/10.3390/rs14010154
Liu X, Cheng X, Liang Q, Li T, Peng F, Chi Z, He J. Grounding Event of Iceberg D28 and Its Interactions with Seabed Topography. Remote Sensing. 2022; 14(1):154. https://doi.org/10.3390/rs14010154
Chicago/Turabian StyleLiu, Xuying, Xiao Cheng, Qi Liang, Teng Li, Fukai Peng, Zhaohui Chi, and Jiaying He. 2022. "Grounding Event of Iceberg D28 and Its Interactions with Seabed Topography" Remote Sensing 14, no. 1: 154. https://doi.org/10.3390/rs14010154