Columnar Aerosol Optical Property Characterization and Aerosol Typing Based on Ground-Based Observations in a Rural Site in the Central Yangtze River Delta Region
Abstract
:1. Introduction
- (1)
- The one-and-a-half-year-long (January 2019–July 2020) variation in columnar AOPs—including SSA, volume size distribution (VSD), AOD, and FMF—were analyzed;
- (2)
- The relationships between AOPs and meteorological parameters—especially relative humidity (RH)—were analyzed in order to further investigate the effects of hygroscopic growth, as well as the impact on aerosol type;
- (3)
- The AOPs during two episodes characterized by typical meteorological and aerosol loading conditions were analyzed.
2. Materials and Methods
2.1. Introduction to Study Area
2.2. Ground-Based Observations
2.3. Meteorological Parameters
2.4. HYSPLIT
2.5. Aerosol Typing Methods
3. Results and Discussion
3.1. Temporal Variation in Aerosol Optical Properties
3.1.1. Hourly and Daily Variation
3.1.2. Monthly Variation
3.2. Wavelength Dependence
3.3. Aerosol Typing
Comparison of Results from Two Aerosol Typing Methods
3.4. Relationship between Aerosol Properties and Meteorological Factors
3.4.1. AOP under Different RH Levels
3.4.2. Aerosol Type Occurrence Frequency under Different RH Levels
3.5. Case Study
3.5.1. Episode 1: 12–27 April 2020
3.5.2. Episode 2: 18–24 August 2019
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Month | SSAt440 1 | SSAf440 1 | SSAc440 1 | Refft 2 (µm) | Refff 2 (µm) | Reffc 2 (µm) | AAOD440 3 | AAE440/870 4 | AE440/870 5 |
---|---|---|---|---|---|---|---|---|---|
January | 0.97 ± 0.01 | 0.97 ± 0.01 | 0.82 ± 0.06 | 0.23 ± 0.04 | 0.19 ± 0.03 | 3.00 ± 1.28 | 0.02 ± 0.01 | 1.12 ± 0.06 | 1.45 ± 0.27 |
February | 0.94 ± 0.05 | 0.95 ± 0.03 | 0.80 ± 0.10 | 0.22 ± 0.06 | 0.15 ± 0.03 | 2.79 ± 1.17 | 0.02 ± 0.01 | 1.06 ± 0.23 | 1.48 ± 0.34 |
March | 0.95 ± 0.03 | 0.96 ± 0.02 | 0.84 ± 0.06 | 0.29 ± 0.09 | 0.16 ± 0.04 | 1.75 ± 0.61 | 0.03 ± 0.01 | 1.04 ± 0.10 | 1.13 ± 0.24 |
April | 0.94 ± 0.02 | 0.95 ± 0.02 | 0.83 ± 0.05 | 0.24 ± 0.05 | 0.16 ± 0.02 | 1.60 ± 0.44 | 0.03 ± 0.01 | 1.06 ± 0.08 | 1.24 ± 0.19 |
May | 0.90 ± 0.05 | 0.94 ± 0.03 | 0.79 ± 0.08 | 0.34 ± 0.15 | 0.14 ± 0.03 | 1.59 ± 0.41 | 0.04 ± 0.01 | 0.95 ± 0.18 | 1.05 ± 0.32 |
June | 0.95 ± 0.02 | 0.96 ± 0.01 | 0.84 ± 0.06 | 0.26 ± 0.04 | 0.20 ± 0.03 | 1.79 ± 0.54 | 0.04 ± 0.01 | 1.06 ± 0.05 | 1.14 ± 0.16 |
July | 0.95 ± 0.03 | 0.95 ± 0.02 | 0.81 ± 0.07 | 0.26 ± 0.06 | 0.20 ± 0.04 | 1.84 ± 0.55 | 0.04 ± 0.01 | 1.08 ± 0.10 | 1.29 ± 0.25 |
August | 0.96 ± 0.02 | 0.96 ± 0.01 | 0.83 ± 0.05 | 0.26 ± 0.09 | 0.19 ± 0.04 | 2.02 ± 0.47 | 0.03 ± 0.01 | 1.10 ± 0.10 | 1.37 ± 0.19 |
September | 0.94 ± 0.04 | 0.96 ± 0.03 | 0.82 ± 0.07 | 0.28 ± 0.10 | 0.17 ± 0.04 | 1.97 ± 0.41 | 0.03 ± 0.01 | 1.03 ± 0.12 | 1.25 ± 0.25 |
October | 0.93 ± 0.03 | 0.96 ± 0.02 | 0.81 ± 0.06 | 0.34 ± 0.15 | 0.17 ± 0.03 | 1.88 ± 0.90 | 0.04 ± 0.02 | 1.10 ± 0.11 | 1.04 ± 0.51 |
November | 0.95 ± 0.01 | 0.96 ± 0.00 | 0.84 ± 0.03 | 0.27 ± 0.02 | 0.20 ± 0.02 | 1.73 ± 0.48 | 0.03 ± 0.01 | 1.06 ± 0.03 | 1.09 ± 0.05 |
December | 0.96 ± 0.02 | 0.97 ± 0.02 | 0.86 ± 0.09 | 0.22 ± 0.06 | 0.16 ± 0.02 | 2.10 ± 1.00 | 0.02 ± 0.01 | 1.10 ± 0.08 | 1.40 ± 0.32 |
Description | |
---|---|
Biomass burning | Produced by forest and grassland fires |
Urban/industrial | From fossil fuel combustion in populated industrial regions |
Continental | From the continent; mainly composed of fine particles (radii < 0.6 µm) [80] |
Subcontinental | Greatly influenced by anthropogenic emissions or natural sources, which have abnormally high AOT440 [41] |
Marine | Originating from the ocean |
Desert Dust | Blown into the atmosphere by wind |
References
- Michou, M.; Nabat, P.; Saint-Martin, D. Development and basic evaluation of a prognostic aerosol scheme (v1) in the CNRM Climate Model CNRM-CM6. Geosci. Model. Dev. 2015, 8, 501–531. [Google Scholar] [CrossRef] [Green Version]
- Mcnaughton, C.S. Constraining Climate Model Simulations of Aerosol Size Distributions over the North Pacific and North America Using in-situ Airborne Measurements; UMI, University of Hawai’I, Manoa. 2008. Available online: https://www.proquest.com/dissertations-theses/constraining-climate-model-simulations-aerosol/docview/304600533/se-2?accountid=28241 (accessed on 14 October 2021).
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Li, M.; Shen, F.; Sun, X. 2019–2020 Australian bushfire air particulate pollution and impact on the South Pacific Ocean. Sci. Rep. 2021, 11, 12288. [Google Scholar] [CrossRef]
- Li, X.; Dong, Y.; Dong, Z.; Du, C.; Chen, C. Observed changes in aerosol physical and optical properties before and after precipitation events. Adv. Atmos. Sci. 2016, 33, 931–944. [Google Scholar] [CrossRef]
- Wang, J.; Virkkula, A.; Gao, Y.; Lee, S.; Shen, Y.; Chi, X.; Nie, W.; Liu, Q.; Xu, Z.; Huang, X.; et al. Observations of aerosol optical properties at a coastal site in Hong Kong, South China. Atmos. Chem. Phys. 2017, 17, 2653–2671. [Google Scholar] [CrossRef] [Green Version]
- Luoma, K.; Virkkula, A.; Aalto, P.; Petäjä, T.; Kulmala, M. Over a 10-year record of aerosol optical properties at SMEAR II. Atmos. Chem. Phys. 2019, 19, 11363–11382. [Google Scholar] [CrossRef] [Green Version]
- Viswanatha Vachaspati, C.; Reshma Begam, G.; Nazeer Ahammed, Y.; Raghavendra Kumar, K.; Reddy, R.R. Characterization of aerosol optical properties and model computed radiative forcing over a semi-arid region, Kadapa in India. Atmos. Res. 2018, 209, 36–49. [Google Scholar] [CrossRef]
- Tutsak, E.; Koçak, M. Optical and microphysical properties of the columnar Aerosol burden over the Eastern Mediterranean: Discrimination of Aerosol types. Atmos. Environ. 2020, 229, 117463. [Google Scholar] [CrossRef]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Muñoz, O.; Veihelmann, B.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111, D11208. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Schmeisser, L.; Backman, J.; Ogren, J.A.; Andrews, E.; Asmi, E.; Starkweather, S.; Uttal, T.; Fiebig, M.; Sharma, S.; Eleftheriadis, K.; et al. Seasonality of aerosol optical properties in the Arctic. Atmos. Chem. Phys. 2018, 18, 11599–11622. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.-X.; Shen, W.-X.; Yuan, Y.; Tan, H.-P. Verification of aerosol classification methods through satellite and ground-based measurements over Harbin, Northeast China. Atmos. Res. 2019, 216, 167–175. [Google Scholar] [CrossRef]
- Li, L.; Dubovik, O.; Derimian, Y.; Schuster, G.L.; Lapyonok, T.; Litvinov, P.; Ducos, F.; Fuertes, D.; Chen, C.; Li, Z.; et al. Retrieval of aerosol components directly from satellite and ground-based measurements. Atmos. Chem. Phys. 2019, 19, 13409–13443. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Ghim, Y.S.; Holben, B.N. Identification of columnar aerosol types under high aerosol optical depth conditions for a single AERONET site in Korea. J. Geophys. Res. Atmos. 2016, 121, 1264–1277. [Google Scholar] [CrossRef] [Green Version]
- Hamill, P.; Giordano, M.; Ward, C.; Giles, D.; Holben, B. An AERONET-based aerosol classification using the Mahalanobis distance. Atmos. Environ. 2016, 140, 213–233. [Google Scholar] [CrossRef]
- Choi, Y.; Ghim, Y.S. Variations in major aerosol components from long-term measurement of columnar aerosol optical properties at a SKYNET site downwind of Seoul, Korea. Atmos. Environ. 2021, 245, 117991. [Google Scholar] [CrossRef]
- Kalapureddy, M.C.R.; Kaskaoutis, D.G.; Ernest Raj, P.; Devara, P.C.S.; Kambezidis, H.D.; Kosmopoulos, P.G.; Nastos, P.T. Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB). J. Geophys. Res. Atmos. 2009, 114, D17203. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, J.; Song, C.H.; Kim, S.B.; Chun, Y.; Sohn, B.J.; Holben, B.N. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmos. Environ. 2010, 44, 3110–3117. [Google Scholar] [CrossRef]
- Su, X.; Cao, J.; Li, Z.; Li, K.; Xu, H.; Liu, S.; Fan, X. Multi-Year Analyses of Columnar Aerosol Optical and Microphysical Properties in Xi’an, a Megacity in Northwestern China. Remote Sens. 2018, 10, 1169. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Che, H.; Qi, B.; Wang, Y.; Dong, Y.; Xia, X.; Wang, H.; Gui, K.; Zheng, Y.; Zhao, H.; et al. Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: Effect of the regional transport of different aerosol types over eastern China. Atmos. Chem. Phys. 2018, 18, 2949–2971. [Google Scholar] [CrossRef] [Green Version]
- Kang, N.; Kumar, K.R.; Hu, K.; Yu, X.; Yin, Y. Long-term (2002–2014) evolution and trend in Collection 5.1 Level-2 aerosol products derived from the MODIS and MISR sensors over the Chinese Yangtze River Delta. Atmos. Res. 2016, 181, 29–43. [Google Scholar] [CrossRef]
- Li, M.; Wang, T.; Xie, M.; Li, S.; Zhuang, B.; Chen, P.; Huang, X.; Han, Y. Agricultural Fire Impacts on Ozone Photochemistry Over the Yangtze River Delta Region, East China. J. Geophys. Res. Atmos. 2018, 123, 6605–6623. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, X.; Zhang, Y.; Zheng, S.; Wang, L.; Liu, D.; Gustave, W.; Jiang, L.; Hua, Y.; Du, S.; et al. Seasonal size distribution and mixing state of black carbon aerosols in a polluted urban environment of the Yangtze River Delta region, China. Sci. Total Environ. 2019, 654, 300–310. [Google Scholar] [CrossRef]
- Yu, X.; Ma, J.; Raghavendra Kumar, K.; Zhu, B.; An, J.; He, J.; Li, M. Measurement and analysis of surface aerosol optical properties over urban Nanjing in the Chinese Yangtze River Delta. Sci. Total Environ. 2016, 542, 277–291. [Google Scholar] [CrossRef]
- Shen, Y.; Virkkula, A.; Ding, A.; Wang, J.; Chi, X.; Nie, W.; Qi, X.; Huang, X.; Liu, Q.; Zheng, L.; et al. Aerosol optical properties at SORPES in Nanjing, east China. Atmos. Chem. Phys. 2018, 18, 5265–5292. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.O.; Zhang, X.; Bi, L. Seasonal aerosol variations over a coastal city, Zhoushan, China from CALIPSO observations. Atmos. Res. 2019, 218, 117–128. [Google Scholar] [CrossRef]
- Shen, J.; Cao, N. Comprehensive observation and analysis of aerosol optical properties and vertical distribution in Nanjing, China. Atmos. Environ. 2020, 239, 117767. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, X.; Zhu, B.; Kumar, K.R.; Li, M.; Li, L. Characterization and source apportionment of black carbon aerosol in the Nanjing Jiangbei New Area based on two years of measurements from Aethalometer. J. Aerosol. Sci. 2020, 139, 105461. [Google Scholar] [CrossRef]
- Wang, H.L.; Qiao, L.P.; Lou, S.R.; Zhou, M.; Ding, A.J.; Huang, H.Y.; Chen, J.M.; Wang, Q.; Tao, S.K.; Chen, C.H.; et al. Chemical composition of PM2.5 and meteorological impact among three years in urban Shanghai, China. J. Clean. Prod. 2016, 112, 1302–1311. [Google Scholar] [CrossRef]
- Notice on Printing and Distributing the Action Plan for Comprehensive Treatment of Air Pollution in Autumn and Winter 2019–2020 in the Yangtze River Delta. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201911/t20191112_741901.html (accessed on 9 October 2021).
- Che, H.; Qi, B.; Zhao, H.; Xia, X.; Eck, T.F.; Goloub, P.; Dubovik, O.; Estelles, V.; Cuevas-Agulló, E.; Blarel, L.; et al. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmos. Chem. Phys. 2018, 18, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Xie, Y.; Tao, Z.; Hu, Q.; Yu, T.; Gu, X. Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China. Atmos. Environ. 2021, 247, 118205. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.A.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Netowrk and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J.; et al. Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer Observation Network (SONET) Measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D. Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5. In Agu Fall Meeting, Reading, United Kingdom. 2015. Available online: https://agu.confex.com/agu/fm15/webprogram/Paper60279.html (accessed on 14 October 2021).
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Kalney, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Shuai, Y.; Li, X.-W.; Liu, B.; Tan, H.-P. Using a new aerosol relative optical thickness concept to identify aerosol particle species. Atmos. Res. 2014, 150, 1–11. [Google Scholar] [CrossRef]
- Chen, Q.-X.; Yuan, Y.; Shuai, Y.; Tan, H.-P. Graphical aerosol classification method using aerosol relative optical depth. Atmos. Environ. 2016, 135, 84–91. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.N.; Eck, T.F.; Smirnov, A.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Ali, A.; Nichol, J.E.; Bilal, M.; Qiu, Z.; Mazhar, U.; Wahiduzzaman, M.; Almazroui, M.; Islam, M.N. Classification of aerosols over Saudi Arabia from 2004–2016. Atmos. Environ. 2020, 241, 117785. [Google Scholar] [CrossRef]
- Huang, C.; Li, J.; Sun, W.; Chen, Q.; Mao, Q.-J.; Yuan, Y. Long-Term Variation Assessment of Aerosol Load and Dominant Types over Asia for Air Quality Studies Using Multi-Sources Aerosol Datasets. Remote Sens. 2021, 13, 3116. [Google Scholar] [CrossRef]
- Zhu, J.; Xia, X.; Che, H.; Wang, J.; Zhang, J.; Duan, Y. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmos. Res. 2016, 169, 237–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Zhang, Y.; Chen, Y.; Cuesta, J.; Ma, Y. Multi-peak accumulation and coarse modes observed from AERONET retrieved aerosol volume size distribution in Beijing. Meteorol. Atmos. Phys. 2016, 128, 537–544. [Google Scholar] [CrossRef]
- Wang, X.; Shen, X.J.; Sun, J.Y.; Zhang, X.Y.; Wang, Y.Q.; Zhang, Y.M.; Wang, P.; Xia, C.; Qi, X.F.; Zhong, J.T. Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016. Atmos. Environ. 2018, 194, 188–197. [Google Scholar] [CrossRef]
- Wu, T.; Li, Z.; Chen, J.; Wang, Y.; Wu, H.; Jin, X.; Liang, C.; Li, S.; Wang, W.; Cribb, M. Hygroscopicity of Different Types of Aerosol Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China. Remote Sens. 2020, 12, 785. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, N.; Eck, T.F.; Smirnov, A.; Holben, B.N.; Thulasiraman, S. Spectral discrimination of coarse and fine mode optical depth. J. Geophys. Res. Atmos. 2003, 108, 4559. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P. Optical properties of dust and crop burning emissions over India using ground and satellite data. Sci. Total Environ. 2020, 718, 134476. [Google Scholar] [CrossRef]
- Cesari, D.; de Benedetto, G.E.; Bonasoni, P.; Busetto, M.; Dinoi, A.; Merico, E.; Chirizzi, D.; Cristofanelli, P.; Donateo, A.; Grasso, F.M.; et al. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci. Total Environ. 2018, 612, 202–213. [Google Scholar] [CrossRef]
- Madhavan, B.L.; Krishnaveni, A.S.; Ratnam, M.V.; Ravi Kiran, V. Climatological aspects of size-resolved column aerosol optical properties over a rural site in the southern peninsular India. Atmos. Res. 2021, 249, 105345. [Google Scholar] [CrossRef]
- Song, S.-K.; Shon, Z.-H.; Park, Y.-H. Diurnal and seasonal characteristics of the optical properties and direct radiative forcing of different aerosol components in Seoul megacity. Sci. Total Environ. 2017, 599–600, 400–412. [Google Scholar] [CrossRef]
- Kuang, Y.; Zhao, C.S.; Tao, J.C.; Ma, N. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect. Atmos. Chem. Phys. 2015, 15, 5761–5772. [Google Scholar] [CrossRef] [Green Version]
- Xun, L.; Lu, H.; Qian, C.; Zhang, Y.; Lyu, S.; Li, X. Analysis of Aerosol Optical Depth from Sun Photometer at Shouxian, China. Atmosphere 2021, 12, 1226. [Google Scholar] [CrossRef]
- Jin, X.; Bergin, M.H.; Yu, X.; Liu, G.; Zhao, J.; Carrico, C.M.; Baumann, K. Measurement of aerosol chemical, physical and radiative properties in the Yangtze delta region of China. Atmos. Environ. 2002, 36, 161–173. [Google Scholar] [CrossRef]
- Xu, J.; Tao, J.; Zhang, R.; Cheng, T.; Leng, C.; Chen, J.; Huang, G.; Li, X.; Zhu, Z. Measurements of surface aerosol optical properties in winter of Shanghai. Atmos. Res. 2012, 109–110, 25–35. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, M.; Han, G.; Ma, X.; Zhu, Z. An Investigation of Aerosol Scattering and Absorption Properties in Wuhan, Central China. Atmosphere 2015, 6, 503–520. [Google Scholar] [CrossRef] [Green Version]
- Gadhavi, H.; Jayaraman, A. Absorbing aerosols: Contribution of biomass burning and implications for radiative forcing. Ann. Geophys. 2010, 28, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhu, B.; Yin, Y.; Yang, J.; Li, Y.; Bu, X. A comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban region. Atmos. Res. 2011, 99, 241–247. [Google Scholar] [CrossRef]
- Kandler, K.; Schütz, L. Climatology of the average water-soluble volume fraction of atmospheric aerosol. Atmos. Res. 2007, 83, 77–92. [Google Scholar] [CrossRef]
- Che, H.; Xia, X.; Zhu, J.; Wang, H.; Wang, Y.; Sun, J.; Zhang, X.; Shi, G. Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environ. Sci. Pollut. Res. Int. 2015, 22, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Dumka, U.C.; Tripathi, N.S.; Misra, A.; Giles, D.M.; Eck, T.F.; Sagar, R.; Holben, B.N. Latitudinal variation of aerosol properties from Indo-Gangetic Plain to central Himalayan foothills during TIGERZ campaign. J. Geophys. Res. Atmos. 2014, 119, 4750–4769. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Che, H.; Xia, X.; Wang, Y.; Yang, L.; Chen, J.; Wang, H.; Zhao, H.; Li, L.; Zhang, L.; et al. Aerosol optical properties and its type classification based on multiyear joint observation campaign in north China plain megalopolis. Chemosphere 2021, 273, 128560. [Google Scholar] [CrossRef]
- Li, J.; Han, Z.; Zhang, R. Influence of aerosol hygroscopic growth parameterization on aerosol optical depth and direct radiative forcing over East Asia. Atmos. Res. 2014, 140–141, 14–27. [Google Scholar] [CrossRef]
- Sokolik, I.N.; Toon, O.B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. Atmos. 1999, 104, 9423–9444. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Shi, G. Experimental investigation on the infrared refraction and extinction properties of rock dust in tunneling face of coal mine. Appl. Opt. 2015, 54, 10532–10540. [Google Scholar] [CrossRef]
- Russell, P.B.; Bergstrom, R.W.; Shinozuka, Y.; Clarke, A.D.; Decarlo, P.F.; Jimenez, J.L.; Livingston, J.M.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.M.; Holben, B.N.; Eck, T.F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R.R.; Thompson, A.M.; Schafer, J.S. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wu, Y.; Zhao, B.; Wu, X.; Shu, J.; Hao, J. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China’s Yangtze River Delta region. J. Environ. Sci. 2017, 51, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.R.; Kang, N.; Yin, Y. Classification of key aerosol types and their frequency distributions based on satellite remote sensing data at an industrially polluted city in the Yangtze River Delta, China. Int. J. Climatol. 2018, 38, 320–336. [Google Scholar] [CrossRef]
- Shen, H.; Hou, W.; Zhu, Y.; Zheng, S.; Tao, S. Temporal and spatial variation of PM2.5 in indoor air monitored by low-cost sensors. Sci. Total Environ. 2021, 770, 145304. [Google Scholar] [CrossRef] [PubMed]
- Massling, A.; Stock, M.; Wehner, B.; Wu, Z.J.; Hu, M.; Brüggemann, E.; Gnauk, T.; Herrmann, H.; Wiedensohler, A. Size segregated water uptake of the urban submicrometer aerosol in Beijing. Atmos. Environ. 2009, 43, 1578–1589. [Google Scholar] [CrossRef]
- Day, D.E.; Malm, W.C. Aerosol light scattering measurements as a function of relative humidity: A comparison between measurements made at three different sites. Atmos. Environ. 2001, 35, 5169–5176. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview (accessed on 14 October 2021). [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1979 to present. Copernic. Clim. Chang. Serv. (C3S) Clim. Data Store (CDS) 2018. [Google Scholar] [CrossRef]
- READY-(noaa.gov). Available online: https://www.ready.noaa.gov/HYSPLIT_traj.php (accessed on 14 October 2021).
- Export Map (ChinaOnlineCommunityENG) (geoq.cn). Available online: http://map.geoq.cn/arcgis/rest/services/ChinaOnlineCommunityENG/MapServer/export?bbox=-5.212883029802394E7,-2.1642074440545984E7,5.682512131586398E7,2.5242564220889986E7 (accessed on 14 October 2021).
- Barnaba, F.; Gobbi, G.P. Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001. Atmos. Chem. Phys. 2004, 4, 2367–2391. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Su, Y.; Gu, X.; Chen, T.; Shao, W.; Hu, Q. Columnar Aerosol Optical Property Characterization and Aerosol Typing Based on Ground-Based Observations in a Rural Site in the Central Yangtze River Delta Region. Remote Sens. 2022, 14, 406. https://doi.org/10.3390/rs14020406
Xie Y, Su Y, Gu X, Chen T, Shao W, Hu Q. Columnar Aerosol Optical Property Characterization and Aerosol Typing Based on Ground-Based Observations in a Rural Site in the Central Yangtze River Delta Region. Remote Sensing. 2022; 14(2):406. https://doi.org/10.3390/rs14020406
Chicago/Turabian StyleXie, Yong, Yi Su, Xingfa Gu, Tiexi Chen, Wen Shao, and Qiaoli Hu. 2022. "Columnar Aerosol Optical Property Characterization and Aerosol Typing Based on Ground-Based Observations in a Rural Site in the Central Yangtze River Delta Region" Remote Sensing 14, no. 2: 406. https://doi.org/10.3390/rs14020406