An Approach to Improve the Spatial Resolution and Accuracy of AMSR2 Passive Microwave Snow Depth Product Using Machine Learning in Northeast China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Ground Observations
2.2.1. Ground Meteorological Stations (Dataset 1)
2.2.2. Snow Routes (Dataset 2)
2.2.3. Observations within the Quadrat (Dataset 3)
2.3. AMSR2 SD Product
2.4. Daily Cloud-Free Snow Cover Data
2.5. Vegetation Fraction Data
2.6. DEM Data
3. Methodology
3.1. Machine Learning Algorithms
3.2. Multifactor SD Downscaling Model Procedure
3.3. Accuracy Evaluation
4. Results
4.1. Selection of Optimal Models
4.2. Downscaling Results with the Multifactor SD Downscaling Model
4.3. Temporal Validation with Meteorological Station Dataset
4.4. Spatial Validation along the Snow Routes
5. Discussion
5.1. Regression Variable Importance
5.2. Potential Errors of the Multifactor SD Downscaling Model
5.3. The Applicability of the Multifactor SD Downscaling Model in Other PMW SD Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulliainen, J.; Luojus, K.; Derksen, C.; Mudryk, L.; Lemmetyinen, J.; Salminen, M.; Ikonen, J.; Takala, M.; Cohen, J.; Smolander, T.; et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 2020, 581, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nat. Clim. Change 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Henderson, G.R.; Peings, Y.; Furtado, J.C.; Kushner, P.J. Snow–atmosphere coupling in the Northern Hemisphere. Nat. Clim. Change 2018, 8, 954–963. [Google Scholar] [CrossRef]
- Foster, J.L.; Chang, A.T.C.; Hall, D.K. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sens. Environ. 1997, 62, 132–142. [Google Scholar] [CrossRef]
- Cohen, J.; Entekhabi, D. Eurasian snow cover variability and northern hemisphere climate predictability. Geophys. Res. Lett. 1999, 26, 345–348. [Google Scholar] [CrossRef]
- Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sens. Environ. 2006, 101, 257–269. [Google Scholar] [CrossRef]
- Derksen, C.; Toose, P.; Rees, A.; Wang, L.; English, M.; Walker, A.; Sturm, M. Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens. Environ. 2010, 114, 1699–1709. [Google Scholar] [CrossRef]
- Che, T.; Dai, L.; Zheng, X.; Li, X.; Zhao, K. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China. Remote Sens. Environ. 2016, 183, 334–349. [Google Scholar] [CrossRef]
- Gu, L.; Fan, X.; Li, X.; Wei, Y. Snow depth retrieval in farmland based on a statistical lookup table from passive microwave data in northeast China. Remote Sens. 2019, 11, 3037. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhao, K.; Wu, L.; Zheng, X.; Jiang, T. Spatiotemporal analysis of snow depth inversion based on the FengYun-3B MicroWave radiation imager: A case study in Heilongjiang Province, China. J. Appl. Remote Sens. 2014, 8, 084692. [Google Scholar] [CrossRef]
- Liang, S.; Li, X.; Zheng, X.; Jiang, T.; Li, X.; Qiao, D. Effects of winter snow cover on spring soil moisture based on remote sensing data product over farmland in Northeast China. Remote Sens. 2020, 12, 2716. [Google Scholar] [CrossRef]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR Derived Global Snow Cover Parameters. Ann. Glaciol. 1987, 9, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Kopczynski, S.; Ramage, J.M.; Lawson, D.E.; Goetz, S.; Evenson, E.B.; Denner, J.; Larson, G. Passive microwave (SSM/I) satellite predictions of valley glacier hydrology, Matanuska Glacier, Alaska. Geophys. Res. Lett. 2008, 35, 034615. [Google Scholar] [CrossRef]
- Mätzler, C.; Wiesmann, A. Extension of the Microwave Emission Model of Layered Snowpacks to Coarse-Grained Snow. Remote Sens. Environ. 1999, 70, 317–325. [Google Scholar] [CrossRef]
- Tao, C.; Xin, L.; Rui, J.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar]
- Yang, J.; Jiang, L.; Wu, S.; Wang, G.; Wang, J.; Liu, X. Development of a Snow Depth Estimation Algorithm over China for the FY-3D/MWRI. Remote Sens. 2019, 11, 977. [Google Scholar] [CrossRef] [Green Version]
- Kelly, R.E.; Chang, A.T.; Tsang, L.; Foster, J.L. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans. Geosci. Remote Sens. 2003, 41, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Che, T.; Wang, J.; Zhang, P. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China. Remote Sens. Environ. 2012, 127, 14–29. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Gu, L.; Zheng, M.X.; Jiang, T.; Li, X.; Wan, X. A Dynamic Snow Depth Inversion Algorithm Derived from AMSR2 Passive Microwave Brightness Temperature Data and Snow Characteristics in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5123–5136. [Google Scholar] [CrossRef]
- Pulliainen, J.T.; Grandell, J.; Hallikainen, M.T. HUT snow emission model and its applicability to snow water equivalent retrieval. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1378–1390. [Google Scholar] [CrossRef]
- Tan, S.; Chang, W.; Tsang, L.; Lemmetyinen, J.; Proksch, M. Modeling Both Active and Passive Microwave Remote Sensing of Snow Using Dense Media Radiative Transfer (DMRT) Theory With Multiple Scattering and Backscattering Enhancement. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4418–4430. [Google Scholar] [CrossRef]
- Santi, E.; Pettinato, S.; Paloscia, S.; Pampaloni, P.; Fontanelli, G.; Crepaz, A.; Valt, M. Monitoring of Alpine snow using satellite radiometers and artificial neural networks. Remote Sens. Environ. 2014, 144, 179–186. [Google Scholar] [CrossRef]
- Du, J.; Kimball, J.S.; Jones, L.A.; Kim, Y.; Glassy, J.; Watts, J.D. A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations. Earth Syst. Sci. Data 2017, 9, 791–808. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.W.; Jiang, L.M.; Lemmetyinen, J.; Luojus, K.; Takala, M.; Wu, S.L.; Pan, J.M. Validation of remotely sensed estimates of snow water equivalent using multiple reference datasets from the middle and high latitudes of China. J. Hydrol. 2020, 590, 125499. [Google Scholar] [CrossRef]
- Li, D.; Durand, M.; Margulis, S.A. Potential for hydrologic characterization of deep mountain snowpack via passive microwave remote sensing in the Kern River basin, Sierra Nevada, USA. Remote Sens. Environ. 2012, 125, 34–48. [Google Scholar] [CrossRef]
- Gu, L.; Ren, R.; Li, X. Snow Depth Retrieval Based on a Multifrequency Dual-Polarized Passive Microwave Unmixing Method From Mixed Forest Observations. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7279–7291. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Luojus, K.; Pan, J.; Lemmetyinen, J.; Takala, M.; Wu, S. Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach. Cryosphere 2020, 14, 1763–1778. [Google Scholar] [CrossRef]
- Molotch, N.P.; Bales, R.C. Scaling snow observations from the point to the grid element: Implications for observation network design. Water Resour. Res. 2005, 41, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Slater, A.G.; Barrett, A.P.; Clark, M.P.; Lundquist, J.D.; Raleigh, M.S. Uncertainty in seasonal snow reconstruction: Relative impacts of model forcing and image availability. Adv. Water Resour. 2013, 55, 165–177. [Google Scholar] [CrossRef]
- Yang, G.; Xie, H.; Lu, N.; Tandong, Y.; Tiangang, L. Toward advanced daily cloud-free snow cover and snow-water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J. Hydrol. 2010, 385, 23–35. [Google Scholar]
- Mhawej, M.; Faour, G.; Fayad, A.; Shaban, A. Towards an enhanced method to map snow cover areas and derive snow-water equivalent in Lebanon. J. Hydrol. 2014, 513, 274–282. [Google Scholar] [CrossRef]
- Yan, D.; Ma, N.; Zhang, Y. Development of a fine-resolution snow depth product based on the snow cover probability for the Tibetan Plateau: Validation and spatial–temporal analyses. J. Hydrol. 2021, 604, 127027. [Google Scholar] [CrossRef]
- Yang, J.W.; Jiang, L.M.; Lemmetyinen, J.; Pan, J.M.; Luojus, K.; Takala, M. Improving snow depth estimation by coupling HUT-optimized effective snow grain size parameters with the random forest approach. Remote Sens. Environ. 2021, 264, 112630. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Wang, J.; Zhou, M.; Liang, T. AMSR2 snow depth downscaling algorithm based on a multifactor approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Wei, P.; Zhang, T.; Zhou, X.; Yi, G.; Li, J.; Wang, N.; Wen, B. Reconstruction of snow depth data at moderate spatial resolution (1 km) from remotely sensed snow data and multiple optimized environmental factors: A case study over the qinghai-tibetan plateau. Remote Sens. 2021, 13, 657. [Google Scholar] [CrossRef]
- Bair, E.H.; Calfa, A.A.; Rittger, K.; Dozier, J. Using machine learning for real-time estimates of snow water equivalent in the watersheds of Afghanistan. Cryosphere 2018, 12, 1579–1594. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Guangrui, W.; Xiaofeng, L.; Xiuxue, C.; Tao, J.; Xingming, Z.; Yanlin, W.; Xiangkun, W.; Jian, W. An investigation on microwave transmissivity at frequencies of 18.7 and 36.5 GHz for diverse forest types during snow season. Int. J. Digit. Earth 2021, 14, 1354–1379. [Google Scholar] [CrossRef]
- Kelly, R. The AMSR-E Snow Depth Algorithm: Description and Initial Results. J. Remote Sens. Soc. Jpn. 2009, 29, 307–317. [Google Scholar]
- Zhu, L.; Zhang, Y.; Wang, J.; Tian, W.; Liu, Q.; Ma, G.; Kan, X.; Chu, Y. Downscaling snow depth mapping by fusion of microwave and optical remote-sensing data based on deep learning. Remote Sens. 2021, 13, 584. [Google Scholar] [CrossRef]
- Hao, X.; Huang, G.; Che, T.; Ji, W.; Sun, X.; Zhao, Q.; Zhao, H.; Wang, J.; Li, H.; Yang, Q. The NIEER AVHRR snow cover extent product over China—A long-term daily snow record for regional climate research. Earth Syst. Sci. Data 2021, 13, 4711–4726. [Google Scholar] [CrossRef]
- Wu, Y.; Duguay, C.R.; Xu, L. Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote Sens. Environ. 2021, 253, 112206. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Che, T.; Xie, H.; Wu, X. Estimation of Snow Depth over the Qinghai-Tibetan Plateau Based on AMSR-E and MODIS Data. Remote Sens. 2018, 10, 1989. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Sanchez, N.; Hui, L.; Ainong, L. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. J. Hydrol. 2018, 563, 1009–1024. [Google Scholar]
- Zhao, T.; Zhang, L.; Jiang, L.; Zhao, S.; Chai, L.; Jin, R. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol. Processes 2011, 25, 1704–1716. [Google Scholar] [CrossRef]
- Zhao, T.; Shi, J.; Zhao, S.; Chen, K.; Wang, P.; Li, S.; Xiong, C.; Xiao, Q. Measurement and Modeling of Multi-Frequency Microwave Emission of Soil Freezing and Thawing Processes. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–4 August 2018. [Google Scholar]
- Gu, L.; Ren, R.; Li, X.; Zhao, K. Snow Depth Retrieval Based on a Multifrequency Passive Microwave Unmixing Method for Saline-Alkaline Land in the Western Jilin Province of China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2210–2222. [Google Scholar] [CrossRef]
- Dai, L.; Che, T.; Ding, Y.; Hao, X. Evaluation of snow cover and snow depth on the Qinghai-Tibetan Plateau derived from passive microwave remote sensing. Cryosphere 2017, 11, 1933–1948. [Google Scholar] [CrossRef] [Green Version]
- Markus, T.; Powell, D.C.; Wang, J.R. Sensitivity of passive microwave snow depth retrievals to weather effects and snow evolution. IEEE Trans. Geosci. Remote Sens. 2006, 44, 68–77. [Google Scholar] [CrossRef]
Named | Date | Number of Samples | Target |
---|---|---|---|
Ground meteorological stations | 2013, 2015, 2017 | 24,000 | Train model and test model performance (test1) |
2014, 2016, 2018 | 20,000 | Temporal validation and analysis (test2) | |
Snow route1 | 2017.12–2018.03 | 60 | Spatial validation and analysis (test3) |
Snow route2 | 2017.12–2018.03 | 102 | |
Quadrat observation | 2018.01.23 | 17 | Fine-scale validation and analysis |
Name | Independent Variable | Regression Models | Test1 (10-Fold CV) | Test2 (Dataset 1) | Test3 (Dataset 2) | Note | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE (cm) | BIAS (cm) | R | RMSE (cm) | BIAS (cm) | R | RMSE (cm) | BIAS (cm) | R | ||||
M1 | SDAMSR2-SP | MLR | 11.92 | −0.03 | 0.35 | 8.05 | −1.48 | 0.41 | 9.99 | −3.73 | 0.38 | Geolocation: lat, lon; Topographical features: Elevation, Slope, Aspect, Roughness; Land cover fraction: Percent_Tree_Cover, Percent_NonTree_Vegetation, Percent_NonVegetated |
SVR | 9.92 | −1.01 | 0.36 | 8.01 | −0.74 | 0.41 | 10.75 | −8.31 | 0.36 | |||
RF | 9.13 | −0.16 | 0.38 | 8.04 | −1.33 | 0.42 | 9.16 | −2.24 | 0.41 | |||
M2 | SDAMSR2-SP +Geolocation | MLR | 11.21 | −0.11 | 0.39 | 8.03 | −1.68 | 0.43 | 9.48 | −3.63 | 0.44 | |
SVR | 9.47 | −1.05 | 0.39 | 7.93 | −0.84 | 0.43 | 10.40 | −8.22 | 0.43 | |||
RF | 7.24 | 0.08 | 0.64 | 7.75 | −1.12 | 0.49 | 8.87 | −1.42 | 0.48 | |||
M3 | SDAMSR2-SP +Geolocation+ Topographical features | MLR | 11.08 | −0.02 | 0.42 | 7.83 | −1.68 | 0.48 | 9.24 | −3.61 | 0.45 | |
SVR | 9.20 | −0.83 | 0.42 | 7.80 | −1.06 | 0.48 | 10.14 | −8.14 | 0.44 | |||
RF | 7.32 | 0.17 | 0.68 | 7.58 | 1.15 | 0.53 | 8.63 | −2.16 | 0.52 | |||
M4 | SDAMSR2-SP +Geolocation+ Topographical features+ Land cover fraction | MLR | 10.98 | −0.13 | 0.42 | 7.81 | −1.78 | 0.48 | 9.31 | −3.63 | 0.44 | |
SVR | 9.36 | −0.60 | 0.43 | 7.86 | −1.08 | 0.47 | 10.20 | −8.26 | 0.43 | |||
RF | 7.34 | −0.03 | 0.69 | 7.58 | −1.17 | 0.53 | 8.60 | −2.18 | 0.52 |
Snow Product | Dataset 1 (Temporal) | Dataset 2 (Spatial) | ||||
---|---|---|---|---|---|---|
RMSE (cm) | Bias (cm) | R | RMSE (cm) | Bias (cm) | R | |
AMSR2 Dgeneral-AMSR2 DAMSR2-SP | 26.15 | 18.01 | 0.39 | 19.15 | 13.71 | 0.34 |
9.15 | 1.78 | 0.40 | 9.87 | −2.63 | 0.36 | |
7.58 | 1.15 | 0.53 | 8.63 | −2.16 | 0.52 |
Snow Product | Dataset 1 (Temporal) | Dataset 2 (Spatial) | ||||
---|---|---|---|---|---|---|
RMSE (cm) | Bias (cm) | R | RMSE (cm) | Bias (cm) | R | |
WESTDC D WESTDC-SP | 9.52 | −1.97 | 0.40 | 12.19 | −6.07 | 0.12 |
7.60 | 1.53 | 0.56 | 9.59 | −3.16 | 0.27 | |
FY | 6.93 | −1.50 | 0.68 | 10.42 | −4.71 | 0.30 |
DFY-SP | 5.83 | 0.57 | 0.76 | 9.46 | −2.35 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Li, X.; Li, L.; Gu, L.; Zheng, X.; Jiang, T.; Li, X. An Approach to Improve the Spatial Resolution and Accuracy of AMSR2 Passive Microwave Snow Depth Product Using Machine Learning in Northeast China. Remote Sens. 2022, 14, 1480. https://doi.org/10.3390/rs14061480
Wei Y, Li X, Li L, Gu L, Zheng X, Jiang T, Li X. An Approach to Improve the Spatial Resolution and Accuracy of AMSR2 Passive Microwave Snow Depth Product Using Machine Learning in Northeast China. Remote Sensing. 2022; 14(6):1480. https://doi.org/10.3390/rs14061480
Chicago/Turabian StyleWei, Yanlin, Xiaofeng Li, Li Li, Lingjia Gu, Xingming Zheng, Tao Jiang, and Xiaojie Li. 2022. "An Approach to Improve the Spatial Resolution and Accuracy of AMSR2 Passive Microwave Snow Depth Product Using Machine Learning in Northeast China" Remote Sensing 14, no. 6: 1480. https://doi.org/10.3390/rs14061480