Estimation of Corn Latent Heat Flux from High Resolution Thermal Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. Remote Sensing Data Acquisition and Processing
2.3. Two-Source Energy Balance (TSEB) Model
2.3.1. Longwave Radiation
2.3.2. Monin-Obukhov Similarity Theory
2.4. Ground-Based Latent Heat Estimates
2.4.1. Penmen-Monteith Estimation of Canopy ET
2.4.2. Ground Reference Porometry Measurements for ET Validation
2.5. Supplemental Ground Reference Data
2.6. Evaluation of TSEB Latent Heat Estimates
2.7. Image Analysis Workflow
3. Results
3.1. Image Registration Accuracy
3.2. Canopy Classification Accuracy
3.3. Evaluation of TSEB Model Latent Heat Estimates
3.3.1. Penmen-Monteith Based Latent Heat
3.3.2. Porometry Based Latent Heat
3.3.3. Change in Latent Heat through the Growing Season
3.3.4. Latent Heat Flux of the Entire Field
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jensen, M.E.; Allen, R.G. Evaporation, Evapotranspiration, and Irrigation Water Requirements, 2nd ed.; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat Thermal Imagery in Monitoring Evapotranspiration and Managing Water Resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An Overview of Current and Potential Applications of Thermal Remote Sensing in Precision Agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Zhu, Y.; Cherkauer, K. Estimation of Crop Latent Heat Flux from High Resolution Thermal Imagery. In Proceedings of the Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV, Baltimore, MD, USA, 14 May 2019. [Google Scholar] [CrossRef]
- Allen, R.G. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations, Ed.; FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 978-92-5-104219-9. [Google Scholar]
- Heitman, J.L.; Horton, R.; Sauer, T.J.; Ren, T.S.; Xiao, X. Latent Heat in Soil Heat Flux Measurements. Agric. For. Meteorol. 2010, 150, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Marek, T.H.; Schneider, A.D.; Howell, T.A.; Ebeling, L.L. Design and Construction of Large Weighing Monolithic Lysimeters. Trans. ASAE 1988, 31, 0477–0484. [Google Scholar] [CrossRef]
- Howell, T.A.; McCormick, R.L.; Phene, C.J. Design and Installation of Large Weighing Lysimeters. Trans. ASAE 1985, 28, 106–112. [Google Scholar] [CrossRef]
- Swinbank, W.C. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. J. Meteorol. 1951, 8, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting Eddy-Covariance Flux Underestimates over a Grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Bowen, I.S. The Ratio of Heat Losses by Conduction and by Evaporation from Any Water Surface. Phys. Rev. 1926, 27, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Natural Evaporation from Open Water, Bare Soil and Grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.K.; Irmak, A. Estimation of Crop Coefficients Using Satellite Remote Sensing. J. Irrig. Drain. Eng. 2009, 135, 597–608. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.; Kustas, W.P.; Zhou, J.; Xu, Z.; Xia, T.; Li, M. Application of Remote Sensing-Based Two-Source Energy Balance Model for Mapping Field Surface Fluxes with Composite and Component Surface Temperatures. Agric. For. Meteorol. 2016, 230–231, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, H.; Nieto, H.; Jensen, R.; Guzinski, R.; Zarco-Tejada, P.; Friborg, T. Estimating Evaporation with Thermal UAV Data and Two-Source Energy Balance Models. Hydrol. Earth Syst. Sci. 2016, 20, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Brenner, C.; Thiem, C.E.; Wizemann, H.-D.; Bernhardt, M.; Schulz, K. Estimating Spatially Distributed Turbulent Heat Fluxes from High-Resolution Thermal Imagery Acquired with a UAV System. Int. J. Remote Sens. 2017, 38, 3003–3026. [Google Scholar] [CrossRef] [Green Version]
- Norman, J.M.; Kustas, W.P.; Prueger, J.H.; Diak, G.R. Surface Flux Estimation Using Radiometric Temperature: A Dual-Temperature-Difference Method to Minimize Measurement Errors. Water Resour. Res. 2000, 36, 2263–2274. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Farías, S.; Ortega-Salazar, S.; Poblete, T.; Kilic, A.; Allen, R.; Poblete-Echeverría, C.; Ahumada-Orellana, L.; Zuñiga, M.; Sepúlveda, D. Estimation of Energy Balance Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV). Remote Sens. 2016, 8, 638. [Google Scholar] [CrossRef] [Green Version]
- Riveros-Burgos, C.; Ortega-Farías, S.; Morales-Salinas, L.; Fuentes-Peñailillo, F.; Tian, F. Assessment of the Clumped Model to Estimate Olive Orchard Evapotranspiration Using Meteorological Data and UAV-Based Thermal Infrared Imagery. Irrig. Sci. 2021, 39, 63–80. [Google Scholar] [CrossRef]
- Brenner, A.J.; Incoll, L.D. The Effect of Clumping and Stomatal Response on Evaporation from Sparsely Vegetated Shrublands. Agric. For. Meteorol. 1997, 84, 187–205. [Google Scholar] [CrossRef]
- Nieto, H.; Kustas, W.P.; Torres-Rúa, A.; Alfieri, J.G.; Gao, F.; Anderson, M.C.; White, W.A.; Song, L.; del Mar Alsina, M.; Prueger, J.H.; et al. Evaluation of TSEB Turbulent Fluxes Using Different Methods for the Retrieval of Soil and Canopy Component Temperatures from UAV Thermal and Multispectral Imagery. Irrig. Sci. 2019, 37, 389–406. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Cherkauer, K. Pixel-Based Calibration and Atmospheric Correction of a UAS-Mounted Thermal Camera for Land Surface Temperature Measurements. Trans. ASABE 2021, 64, 2137–2150. [Google Scholar] [CrossRef]
- De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The Mahalanobis Distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; ISBN 978-1-118-34328-9. [Google Scholar]
- Colaizzi, P.D.; Kustas, W.P.; Anderson, M.C.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; O’Shaughnessy, S.A. Two-Source Energy Balance Model Estimates of Evapotranspiration Using Component and Composite Surface Temperatures. Adv. Water Resour. 2012, 50, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Li, Z.-L.; Jia, Y.; Li, C.; Chen, K.-S.; Sun, X.; Lou, J. Evaluating One- and Two-Source Energy Balance Models in Estimating Surface Evapotranspiration from Landsat-Derived Surface Temperature and Field Measurements. Int. J. Remote Sens. 2013, 34, 3299–3313. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Evaluation of Soil and Vegetation Heat Flux Predictions Using a Simple Two-Source Model with Radiometric Temperatures for Partial Canopy Cover. Agric. For. Meteorol. 1999, 94, 13–29. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1998; ISBN 978-0-387-94937-6. [Google Scholar]
- Weiss, A.; Norman, J.M. Partitioning Solar Radiation into Direct and Diffuse, Visible and near-Infrared Components. Agric. For. Meteorol. 1985, 34, 205–213. [Google Scholar] [CrossRef]
- Monin, A.S.; Obukhov, A.M. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Brutsaert, W. Hydrology: An Introduction; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; ISBN 978-0-521-82479-8. [Google Scholar]
- Piccinni, G.; Ko, J.; Marek, T.; Howell, T. Determination of Growth-Stage-Specific Crop Coefficients (KC) of Maize and Sorghum. Agric. Water Manag. 2009, 96, 1698–1704. [Google Scholar] [CrossRef]
- SC-1. Available online: http://library.metergroup.com/Manuals/20773%20_SC-1_Manual_Web.pdf (accessed on 5 January 2022).
- Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy Temperature as a Crop Water Stress Indicator. Water Resour. Res. 1981, 17, 1133–1138. [Google Scholar] [CrossRef]
- Gerosa, G.; Mereu, S.; Finco, A.; Marzuoli, R. Stomatal Conductance Modeling to Estimate the Evapotranspiration of Natural and Agricultural Ecosystems. In Evapotranspiration-Remote Sensing and Modeling; Irmak, A., Ed.; InTech: London, UK, 2012; ISBN 978-953-307-808-3. [Google Scholar]
- Zhu, Y.; Irmak, S.; Jhala, A.J.; Vuran, M.C.; Diotto, A. Time-Domain and Frequency-Domain Reflectometry Type Soil Moisture Sensor Performance and Soil Temperature Effects in Fine- and Coarse-Textured Soils. Appl. Eng. Agric. 2019, 35, 117–134. [Google Scholar] [CrossRef]
- Irmak, S. Evapotranspiration. In Encyclopedia of Ecology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1432–1438. ISBN 978-0-08-045405-4. [Google Scholar]
Ground Reference | ||||||
---|---|---|---|---|---|---|
Class | Crop | Sunlit Soil | Shaded Soil | Row Total | User Accuracy | |
Crop | 107 | 0 | 2 | 109 | 98.17% | |
Predicted | Sunlit Soil | 1 | 30 | 0 | 31 | 96.77% |
Shaded Soil | 4 | 0 | 43 | 47 | 91.49% | |
Column Total | 112 | 30 | 45 | 187 | ||
Producer Accuracy | 95.54% | 100.00% | 95.56% | Overall Accuracy 96.26% |
Time | Air Temperature (°C) | Wind Speed (m/s) | Relative Humidity (%) | Solar Radiation (W/m2) | 5-Day Rain (mm) | DAP | RMSE (W/m2) |
---|---|---|---|---|---|---|---|
12 July 2018(16:00) | 29.5 | 2.1 | 44.7 | 836.94 | 10.16 | 65 | 69.37 |
8 August 2018 (15:30) | 28.5 | 4.7 | 57.7 | 699.17 | 24.13 | 92 | 63.03 |
31 August 2018 (17:00) | 31.1 | 3.0 | 56.5 | 459.58 | 9.14 | 115 | 60.99 |
2 July 2020 (17:00) | 31.1 | 3.6 | 40.9 | 705.00 | 2.03 | 51 | 71.82 |
14 July 2020 (16:30) | 29.0 | 4.0 | 43.5 | 743.65 | 27.69 | 63 | 54.52 |
24 July 2020 (17:00) | 28.9 | 2.2 | 49.1 | 731.64 | 15.49 | 73 | 70.08 |
28 July 2020 (17:00) | 28.8 | 3.1 | 46.2 | 707.90 | 34.04 | 77 | 106.63 |
13 August 2020 (19:30) | 26.6 | 2.7 | 64.5 | 109.40 | 20.32 | 93 | 16.76 |
28 August 2020 (16:30) | 30.7 | 3.1 | 60.0 | 568.30 | 5.84 | 108 | 65.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Ludwig, E.M.; Cherkauer, K.A. Estimation of Corn Latent Heat Flux from High Resolution Thermal Imagery. Remote Sens. 2022, 14, 2682. https://doi.org/10.3390/rs14112682
Zhu Y, Ludwig EM, Cherkauer KA. Estimation of Corn Latent Heat Flux from High Resolution Thermal Imagery. Remote Sensing. 2022; 14(11):2682. https://doi.org/10.3390/rs14112682
Chicago/Turabian StyleZhu, Yan, Elaina M. Ludwig, and Keith A. Cherkauer. 2022. "Estimation of Corn Latent Heat Flux from High Resolution Thermal Imagery" Remote Sensing 14, no. 11: 2682. https://doi.org/10.3390/rs14112682