Mapping of Soil Organic Carbon Stocks Based on Aerial Photography in a Fragmented Desertification Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Desertification Classification System and UAV Flight Settings
2.3. Image Postprocessing for Fractional Vegetation Coverage
2.4. Soil Sampling and Estimation of SOC Stocks
2.5. Spatial Dataset Acquisition and Comparison
2.5.1. Data Sources of Land Desertification
2.5.2. Vegetation and Climate Covariates
2.5.3. Topographic Covariates
2.5.4. Digital Soil Database for Comparison
2.6. Statistical and Prediction Methods
2.6.1. Regression Kriging and Cross-Validation
2.6.2. Structural Equation Modeling
2.6.3. Multiple Comparisons
3. Results
3.1. Prediction of Spatial Pattern of the Desertification Degree
3.2. Relationship between the Desertification Degree and SOCD
3.3. Prediction of Spatial Patterns of SOCD Based on Soil-forming Factors
4. Discussion
4.1. Patchiness Identification and Relationships between SOCD and Soil-Forming Factors
4.2. Comparisons of Patchiness and Accuracy for SOCD Mapping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- Chasek, P.; Akhtar-Schuster, M.; Orr, B.J.; Luise, A.; Rakoto Ratsimba, H.; Safriel, U. Land degradation neutrality: The science-policy interface from the UNCCD to national implementation. Environ. Sci. Policy 2019, 92, 182–190. [Google Scholar] [CrossRef]
- UNCCD. Report of the Conference of the Parties on Its Twelfth Session; Part Two; Action Taken: Ankara, Turkey, 2015. [Google Scholar]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 6 June 2019).
- Kust, G.; Andreeva, O.; Cowie, A. Land Degradation Neutrality: Concept development, practical applications and assessment. J. Environ. Manag. 2017, 195, 16–24. [Google Scholar] [CrossRef] [PubMed]
- IPBES. The IPBES Assessment Report on Land Degradation and Restoration; Montanarella, L., Scholes, R., Brainich, A., Eds.; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018. [Google Scholar]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geography. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van, D.P.W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Chappell, A.; Webb, N.P.; Leys, J.F.; Waters, C.M.; Orgill, S.; Eyres, M.J. Minimising soil organic carbon erosion by wind is critical for land degradation neutrality. Environ. Sci. Policy 2019, 93, 43–52. [Google Scholar] [CrossRef]
- Bouma, J. How to communicate soil expertise more effectively in the information age when aiming at the UN Sustainable Development Goals. Soil Use Manag. 2019, 35, 32–38. [Google Scholar] [CrossRef] [Green Version]
- FAO; ITP. Status of the World’s Soil Resources (SWSR)—Technical Summary; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Oldeman, L.R.; Hakkeling, R.T.A.; Sombroek, W.G. World Map of the Status of Human-Induced Soil Degradation: An explanatory Note, rev. ed.; UNEP and ISRIC: Wageningen, Netherlands, 1991. [Google Scholar]
- Arrouays, D.; Grundy, M.G.; Hartemink, A.E.; Hempel, J.W.; Heuvelink, G.B.M.; Hong, S.Y.; Lagacherie, P.; Lelyk, G.; McBratney, A.B.; McKenzie, N.J.; et al. Chapter Three-GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 125, pp. 93–134. [Google Scholar]
- Yan, C. Desert (Sand) Distribution Dataset (1 km) in China. National Earth System Science Data Center; National Science & Technology Infrastructure of China. Available online: http://www.geodata.cn (accessed on 11 May 2020).
- Yan, C.; Wang, J. 1:100000 Desert (Sand) Distribution Dataset in China. National Cryosphere Desert Data Center. Available online: http://www.ncdc.ac.cn (accessed on 6 May 2020).
- Zhu, A.X.; Yang, L.; Fan, N.; Zeng, C.; Zhang, G. The review and outlook of digital soil mapping. Prog. Geography. 2018, 37, 66–78. [Google Scholar]
- Zhang, Y.; Guo, L.; Chen, Y.; Shi, T.; Luo, M.; Ju, Q.; Zhang, H.; Wang, S. Prediction of Soil Organic Carbon based on Landsat 8 Monthly NDVI Data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Y.; Gong, X.; Niu, Y.; Chen, Y.; Shi, X.; Li, W.; Liu, J. Changes of soil organic carbon stocks from the 1980s to 2018 in northern China’s agro-pastoral ecotone. Catena 2020, 194, 104722. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Chen, Y.; Luo, Y.; Lian, J.; Niu, Y.; Gong, X.; Yang, H.; Yu, P. Changes in surface soil organic carbon in semiarid degraded Horqin Grassland of northeastern China between the 1980s and the 2010s. Catena 2019, 174, 217–226. [Google Scholar] [CrossRef]
- Keskin, H.; Grunwald, S. Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma 2018, 326, 22–41. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Gong, X.; Niu, Y.; Chen, Y.; Shi, X.; Li, W. Storage, pattern and driving factors of soil organic carbon in an ecologically fragile zone of northern China. Geoderma 2019, 343, 155–165. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes, D.J.J.; Heuvelink, G.B.; Ruiperez, G.M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wu, P.; Yin, A.; Yang, X.; Zhang, M.; Gao, C. Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China: A comparison of multiple linear regressions and the random forest model. Sci. Total Environ. 2017, 592, 704–713. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning for digital soil mapping. Soil 2019, 5, 79–89. [Google Scholar] [CrossRef] [Green Version]
- McBratney, A.B.; Mendonca Santos, M.L.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Qin, Y.; Yi, S.; Ding, Y.; Xu, G.; Chen, J.; Wang, Z. Effects of small-scale patchiness of alpine grassland on ecosystem carbon and nitrogen accumulation and estimation in northeastern Qinghai-Tibetan Plateau. Geoderma 2018, 318, 52–63. [Google Scholar] [CrossRef]
- Zhao, H.L.; He, Y.H.; Zhou, R.L.; Su, Y.Z.; Li, Y.Q.; Drake, S. Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena 2009, 3, 187–191. [Google Scholar] [CrossRef]
- Li, Y.; Han, J.; Wang, S.; Brandle, J.; Lian, J.; Luo, Y.; Zhang, F. Soil organic carbon and total nitrogen storage under different land uses in the Naiman Banner, a semiarid degraded region of northern China. Can. J. Soil Sci. 2014, 94, 9–20. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Niu, Y.; Jie, L.; Luo, Y.; Chen, Y.; Gong, X.; Yang, H.; Yu, P. Spatial distribution of soil organic carbon in the ecologically fragile Horqin Grassland of northeastern China. Geoderma 2018, 325, 102–109. [Google Scholar] [CrossRef]
- Law, B.E.; Hudiburg, T.W.; Berner, L.T.; Kent, J.J.; Buotte, P.C.; Harmon, M.E. Land Use Strategies to Mitigate Climate Change in Carbon Dense Temperate Forests. Proc. Natl. Acad. Sci. USA 2018, 115, 3663–3668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballabio, C.; Fava, F.; Rosenmund, A. A plant ecology approach to digital soil mapping, improving the prediction of soil organic carbon content in alpine grasslands. Geoderma 2012, 187, 102–116. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A. Texture and Scale in object-based Analysis of Subdecimeter Resolution Unmanned Aerial Vehicle (UAV) Imagery. IEEE T. Geosci. Remote 2009, 47, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Zhao, W.; Qin, L.; Mao, P.; Qiu, X.; Xu, L.; Xiong, Y.J.; Ran, Y.; Qiu, G. A methodology to determine the optimal quadrat size for desert vegetation surveying based on unmanned aerial vehicle (UAV) RGB photography. Int. J. Remote Sens. 2021, 42, 84–105. [Google Scholar] [CrossRef]
- Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [Google Scholar] [CrossRef]
- Yi, S.; Chen, J.; Qin, Y.; Xu, G. The burying and grazing effects of plateau pika on alpine grassland are small: A pilot study in a semiarid basin on the Qinghai-Tibet Plateau. Biogeosciences 2016, 13, 6273–6284. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; He, M.; Li, X. Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology. Remote Sens. 2020, 12, 1742. [Google Scholar] [CrossRef]
- Mao, P.; Qin, L.; Hao, M.; Zhao, W.; Luo, J.; Qiu, X.; Xu, L.; Xiong, Y.; Ran, Y.; Yan, C.; et al. An improved approach to estimate above-ground volume and biomass of desert shrub communities based on UAV RGB images. Ecol. Indic. 2021, 125, 107494. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhao, H.L.; Zhao, A.F. Wind-Sandy Environment and Vegetation in the Horqin Sandy Land; Science Press: Beijing, China, 1996. (In Chinese) [Google Scholar]
- Lian, J.; Zhao, X.; Li, X.; Zhang, T.; Wang, S.; Luo, Y.; Zhu, Y.; Feng, J. Detecting Sustainability of Desertification Reversion: Vegetation Trend Analysis in Part of the Agro-Pastoral Transitional Zone in Inner Mongolia, China. Sustainability 2017, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006—A Framework for International Classification, Correlation and Communication; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; Volume 103. [Google Scholar]
- Wang, T. Atlas of Sandy Desert and Aeolian Desertification in Northern China; Science Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Zhao, H.L.; Zhao, R.L.; Zhao, X.Y.; Zhang, T.H. Ground Discriminance on Positive and Negative Processes of Land Desertification in Horqin Sand Land. J. Desert Res. 2008, 28, 8–15. (In Chinese) [Google Scholar]
- Zhao, H.L.; Zhao, X.Y.; Zhang, T.H.; Wu, W.; Su, Y.Z.; Zhou, R.L.; Wang, H.O. Desertification Processes and Its Restoration Mechanisms in the Horqin Sand Land; Ocean Press: Beijing, China, 2003. [Google Scholar]
- Zhu, Z.; Liu, S. The Concept of Desertification and the Differentiation of Its Development. J. Desert Res. 1984, 4, 2–8. (In Chinese) [Google Scholar]
- Duan, H.C.; Tao, W.; Xian, X.; Liu, S.L.; Jian, G. Dynamics of aeolian desertification and its driving forces in the Horqin Sandy Land, Northern China. Environ. Monit. Assess. 2014, 186, 6083–6096. [Google Scholar] [CrossRef]
- Yi, S. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. Int. J. Remote Sens. 2017, 38, 2686–2697. [Google Scholar] [CrossRef]
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V061. NASA EOSDIS LP DAAC. 2015. Available online: https://lpdaac.usgs.gov/products/mod13q1v061/ (accessed on 6 March 2022).
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; American Society of Agronomy & Soil Science Society of America: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 2002, 116, S107–S118. [Google Scholar] [CrossRef]
- EROS Center. Digital Elevation-Shuttle Radar Topography Mission (SRTM) 3 Arc-Second Global; USGS. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm (accessed on 11 May 2020).
- Poggio, L.; De Sousa, L.; Batjes, N.; Heuvelink, G.; Kempen, B.; Ribeiro, E.; Rossiter, D. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 2021, 7, 217–240. [Google Scholar] [CrossRef]
- ESRI Inc. ArcGIS Pro Help; ESRI Inc.: Redlands, CA, USA, 2020. [Google Scholar]
- Grace, J.B.; Anderson, T.M.; Seabloom, E.W.; Borer, E.T.; Adler, P.B.; Harpole, W.S.; Hautier, Y.; Hillebrand, H.; Lind, E.M.; Pärtel, M.; et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 2016, 529, 390–393. [Google Scholar] [CrossRef] [PubMed]
- Lefcheck, J.S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 2016, 7, 573–579. [Google Scholar] [CrossRef]
- Zdruli, P.; Lal, R.; Cherlet, M.; Kapur, S. New World Atlas of Desertification and Issues of Carbon Sequestration, Organic Carbon Stocks, Nutrient Depletion and Implications for Food Security. In Carbon Management, Technologies, and Trends in Mediterranean Ecosystems; Erşahin, S., Kapur, S., Akça, E., Namlı, A., Erdoğan, H.E., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 13–25. [Google Scholar]
- Lal, R. Soil management and restoration for C sequestration to mitigate the accelerated greenhouse effect. Prog. Environ. Sci. 1999, 1, 307–326. [Google Scholar]
- Li, Y.; Brandle, J.; Awada, T.; Chen, Y.; Han, J.; Zhang, F.; Luo, Y. Accumulation of carbon and nitrogen in the plant—soil system after afforestation of active sand dunes in China’s Horqin Sandy Land. Agric. Ecosyst. Environ. 2013, 177, 75–84. [Google Scholar] [CrossRef]
- Tang, Z.; An, H.; Deng, L.; Wang, Y.; Zhu, G.; Shangguan, Z. Effect of desertification on productivity in a desert steppe. Sci. Rep. 2016, 6, 27839. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Yan, W.; Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 2021, 781, 146777. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; Petrone, R.M.; Mendoza, C.; Devito, K.J. Surface vegetation controls on evapotranspiration from a sub-humid Western Boreal Plain wetland. Hydrol. Process. 2010, 24, 1072–1085. [Google Scholar] [CrossRef]
- Jin, Z.; Liang, W.; Yang, Y.; Zhang, W.; Yan, J.; Chen, X.; Li, S.; Mo, X. Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau. Sci. Rep. 2017, 7, 8191. [Google Scholar] [CrossRef]
- Conant, R.T.; Ryan, M.; Ågren, G.I.; Birge, H.E.; Davidson, E.A.; Eliasson, P.E.; Evans, S.E.; Frey, S.D.; Giardina, C.P.; Hopkins, F.M.; et al. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Glob. Chang. Biol. 2011, 17, 3392–3404. [Google Scholar] [CrossRef]
- Huang, W.; Hall, S.J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nat. Commun. 2017, 8, 1774. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Gao, Y.; He, M.; Wang, M.; Wang, Y.; Zhao, L.; Li, Y. Carbon fluxes response of an artificial sand-binding vegetation system to rainfall variation during the growing season in the Tengger Desert. J. Environ. Manag. 2020, 266, 110556. [Google Scholar] [CrossRef]
- Zuo, X.; Zhao, X.; Zhao, H.; Guo, Y.; Zhang, T.; Cui, J. Spatial pattern and heterogeneity of soil organic carbon and nitrogen in sand dunes related to vegetation change and geomorphic position in Horqin Sandy Land, Northern China. Environ. Monit. Assess. 2010, 164, 29–42. [Google Scholar] [CrossRef]
- Zhao, H.L.; Yi, X.Y.; Zhou, R.L.; Zhao, X.Y.; Zhang, T.H.; Drake, S. Wind erosion and sand accumulation effects on soil properties in Horqin Sandy Farmland, Inner Mongolia. Catena 2006, 65, 71–79. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, S. Desertification and Its Control in China; Science Press: Beijing, China, 1989. (In Chinese) [Google Scholar]
- Marcial-Pablo, M.D.J.; Gonzalez-Sanchez, A.; Jimenez-Jimenez, S.I.; Ontiveros-Capurata, R.E.; Ojeda-Bustamante, W. Esti-mation of vegetation fraction using RGB and multispectral images from UAV. Int. J. Remote Sens. 2019, 40, 420–438. [Google Scholar] [CrossRef]
Desertification Degree | Vegetation Cover (%) | Landscape Features |
---|---|---|
Extremely severe | <10 | Landscape dominated by continuous mobile dunes, unproductive land with a few pioneer plant individuals (e.g., Agriophyllum squarrosum). |
Severe | 10–30 | Mobile sand covers >50% of the area, sparse vegetation dominated by a few annual herbs and pioneer subshrubs (e.g., Artemisia halodendron). |
Moderate | 30–60 | Mobile sand covers 25 to 50% of the area, with obvious vegetation differences between the windward and leeward slopes of dunes as a result of wind erosion and sediment deposition. soil or biological soil crust covers 30 to 80% of the area. |
Slight | >60 | Scattered patches of mobile sand in <25% of the area, with the original vegetation structure mostly preserved. More than 80% of the area is covered by soil or biological soil crust. |
Desertification Degree | Proportion of Area (%) | Spatial Average of FVC (%) |
---|---|---|
Severe and extremely severe | 29.2 | 18.9 |
Moderate | 30.4 | 44.0 |
Slight | 40.4 | 73.6 |
Average | 48.7 |
Independent Variables | Soil Layer | ME | RMSE | MSE | RMSSE |
---|---|---|---|---|---|
FVC, MAT, AP, ET, slope, SA, and Elevation (EBK Regression) | 0–40 cm | −0.009 | 0.841 | −0.012 | 0.946 |
0–100 cm | 0.032 | 1.940 | 0.008 | 0.964 | |
None (Empirical Bayesian Kriging) | 0–40 cm | −0.007 | 0.988 | −0.004 | 0.927 |
0–100 cm | −0.007 | 2.172 | −0.003 | 0.976 | |
None (Ordinary Kriging) | 0–40 cm | 0.338 | 1.154 | 0.081 | 0.472 |
0–100 cm | 0.411 | 2.329 | 0.043 | 0.702 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, J.; Gong, X.; Wang, X.; Wang, X.; Zhao, X.; Li, X.; Su, N.; Li, Y. Mapping of Soil Organic Carbon Stocks Based on Aerial Photography in a Fragmented Desertification Landscape. Remote Sens. 2022, 14, 2829. https://doi.org/10.3390/rs14122829
Lian J, Gong X, Wang X, Wang X, Zhao X, Li X, Su N, Li Y. Mapping of Soil Organic Carbon Stocks Based on Aerial Photography in a Fragmented Desertification Landscape. Remote Sensing. 2022; 14(12):2829. https://doi.org/10.3390/rs14122829
Chicago/Turabian StyleLian, Jie, Xiangwen Gong, Xinyuan Wang, Xuyang Wang, Xueyong Zhao, Xin Li, Na Su, and Yuqiang Li. 2022. "Mapping of Soil Organic Carbon Stocks Based on Aerial Photography in a Fragmented Desertification Landscape" Remote Sensing 14, no. 12: 2829. https://doi.org/10.3390/rs14122829