Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables
Abstract
:1. Introduction
- To analyse and evaluate the potential of intra-annual (from 2017 to 2019) Sentinel-1/2 SITS for distinguishing between intensively and extensively managed grassland at the parcel level.
- To identify the importance of input features (acquisition dates, environmental variables, etc.) for grassland use intensity classification accuracy with Random Forest algorithm and combined multisensor SITS.
2. Materials and Methods
2.1. Study Area
2.2. Reference Grassland Data and Training Dataset
2.3. Sentinel-1/2 Images Pre-Processing
2.4. Environmental Variables
2.5. Mapping Units of Grassland Areas
2.5.1. Permanent Grassland Polygons
2.5.2. Permanent Grassland Segments
2.6. Preparing Time Series with Eo-Learn
2.7. Random Forest Classification Approach and Feature Ranking
3. Results
3.1. NDVI and Coherence SITS Analysis
Relationship between NDVI and Coherence
3.2. Grassland Classification Accuracy and Feature Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lesschen, J.P.; Elbersen, B.; Hazeu, G.; van Doorn, A.; Mucher, S.; Velthof, G. Defining and Classifying Grasslands in Europe; Wageningen University and Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- Wicke, B.; Kluts, I.; Lesschen, J.P. Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands. Land 2020, 9, 457. [Google Scholar] [CrossRef]
- Huyghe, C.; de Vliegher, A.; Gils, B.; Peeters, A. Grasslands and Herbivore Production in Europe and Effects of Common Policies; Editions Quae: Versailles, France, 2014; ISBN 978-2-7592-2157-8. [Google Scholar]
- Klein, N.; Theux, C.; Arlettaz, R.; Jacot, A.; Pradervand, J.-N. Modeling the effects of grassland management intensity on biodiversity. Ecol. Evol. 2020, 10, 13518–13529. [Google Scholar] [CrossRef] [PubMed]
- Nemecek, T.; Huguenin-Elie, O.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Kuenzer, C.; Ottinger, M.; Wegmann, M.; Guo, H.; Wang, C.; Zhang, J.; Dech, S.; Wikelski, M. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks. Int. J. Remote Sens. 2014, 35, 6599–6647. [Google Scholar] [CrossRef] [Green Version]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Bekkema, M.E.; Eleveld, M. Mapping Grassland Management Intensity Using Sentinel-2 Satellite Data. Giforum 2018, 1, 194–213. [Google Scholar] [CrossRef]
- Chiboub, O.; Kallel, A.; Frison, P.L.; Lopes, M. Monitoring of Grasslands Management Practices Using Interferometric Products Sentinel-1. In Advances in Remote Sensing and Geo Informatics Applications; CAJG 2018. Advances in Science, Technology & Innovation; El-Askary, H., Lee, S., Heggy, E., Pradhan, B., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Lemoine, G.; van der Velde, M. Targeted Grassland Monitoring at Parcel Level Using Sentinels, Street-Level Images and Field Observations. Remote Sens. 2018, 10, 1300. [Google Scholar] [CrossRef] [Green Version]
- Corbane, C.; Lang, S.; Pipkins, K.; Alleaume, S.; Deshayes, M.; García Millán, V.E.; Strasser, T.; Vanden Borre, J.; Toon, S.; Michael, F. Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 7–16. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. JPECOL 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens. 2001, 22, 2377–2400. [Google Scholar] [CrossRef]
- Pettorelli, N.; Safi, K.; Turner, W. Satellite remote sensing, biodiversity research and conservation of the future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130190. [Google Scholar] [CrossRef] [PubMed]
- Holtgrave, A.-K.; Röder, N.; Ackermann, A.; Erasmi, S.; Kleinschmit, B. Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sens. 2020, 12, 2919. [Google Scholar] [CrossRef]
- Tamm, T.; Zalite, K.; Voormansik, K.; Talgre, L. Relating Sentinel-1 Interferometric Coherence to Mowing Events on Grasslands. Remote Sens. 2016, 8, 802. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Niculescu, S.; Talab Ou Ali, H.; Billey, A. Random forest classification using Sentinel-1 and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France). In Remote Sensing for Agriculture, Ecosystems, and Hydrology XX, Remote Sensing for Agriculture, Ecosystems, and Hydrology, Berlin, Germany, 10–13 September 2018; Neale, C.M., Maltese, A., Eds.; SPIE: Philadelphia, PA, USA, 2018; p. 6. ISBN 9781510621497. [Google Scholar]
- Meroni, M.; d’Andrimont, R.; Vrieling, A.; Fasbender, D.; Lemoine, G.; Rembold, F.; Seguini, L.; Verhegghen, A. Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2. Remote Sens. Environ. 2021, 253, 112232. [Google Scholar] [CrossRef]
- Kolecka, N.; Ginzler, C.; Pazur, R.; Price, B.; Verburg, P. Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series. Remote Sens. 2018, 10, 1221. [Google Scholar] [CrossRef] [Green Version]
- Mestre-Quereda, A.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Jacob, A.W.; Engdahl, M.E. Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4070–4084. [Google Scholar] [CrossRef]
- Lubej, M. Land Cover Classification with eo-learn: Part 1—Sentinel Hub Blog—Medium. Sentinel Hub Blog [Online]. Available online: https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-1-2471e8098195 (accessed on 12 May 2021).
- Lubej, M. Land Cover Classification with eo-learn: Part 2—Sentinel Hub Blog—Medium. Sentinel Hub Blog [Online]. Available online: https://medium.com/sentinel-hub/land-cover-classification-with-eo-learn-part-2-bd9aa86f8500 (accessed on 14 May 2021).
- Clus: A Predictive Clustering System. Available online: https://dtai.cs.kuleuven.be/clus/ (accessed on 16 May 2021).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 30 June 2021).
- Perko, D.; Ciglič, R. Slovenia as a European landscape hotspot. AGB 2015, 1, 45–54. [Google Scholar] [CrossRef]
- Zavod RS za Varstvo Narave. Kartiranje Habitatnih Tipov. Available online: https://zrsvn-varstvonarave.si/informacije-za-uporabnike/katalog-informacij-javnega-znacaja/habitatni-tipi/ (accessed on 24 June 2021).
- Jogan, N.; Kaligarič, M.; Seliškar, A. Habitatni Tipi Slovenije: Tipologija; Ministrstvo za okolje, prostor in energijo, Agencija RS za okolje: Ljubljana, Slovenia, 2004; ISBN 9616324209.
- PHYSIS A Classification of Palaeartic Habitats. Available online: http://cb.naturalsciences.be/databases/cb_db_physis_eng.htm (accessed on 24 June 2021).
- Oštir, K.; Čotar, K.; Marsetič, A.; Pehani, P.; Perše, M.; Zakšek, K.; Zaletelj, J.; Rodič, T. Automatic Near-Real-Time Image Processing Chain for Very High Resolution Optical Satellite Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-7/W3, 669–676. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Pehani, P.; Čož, N.; Veljanovski, T.; Kokalj, Ž.; Lisec, A.; Oštir, K. Automatic Processing of Sentinel-1 Sigma and Coherence: Technical Report; ZRC SAZU: Ljubljana, Slovenia, 2020. [Google Scholar]
- Viira, A.-H.; Ariva, J.; Kall, K.; Oper, L.; Jürgenson, E.; Maasikamäe, S.; Põldaru, R. Restricting the eligible maintenance practices of permanent grassland—A realistic way towards more active farming? Agron. Res. 2020, 18, 1556–1572. [Google Scholar] [CrossRef]
- Land Parcel Identification System (LPIS)—European Data Portal. Available online: https://www.europeandataportal.eu/data/datasets/8c8072f5-2075-49c3-b3e5-56ee58f8db8d?locale=en (accessed on 16 March 2021).
- MKGP—Portal. Available online: https://rkg.gov.si/vstop/ (accessed on 24 June 2021).
- European Court of Auditors. The Land Parcel Identification System: A Useful Tool to Determine the Eligibility of Agricultural Land—But its Management Could Be Further Improved; European Court of Auditors: Luxembourg, 2016.
- Robinson, D.J.; Redding, N.J.; Crisp, D.J. Implementation of a Fast Algorithm for Segmenting SAR Imagery; DSTO Electronics and Surveillance Research Laboratory: Edinburgh, Australia, 2002. [Google Scholar]
- Löw, M.; Koukal, T. Phenology Modelling and Forest Disturbance Mapping with Sentinel-2 Time Series in Austria. Remote Sens. 2020, 12, 4191. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Petković, M.; Kocev, D.; Džeroski, S. Feature ranking for multi-target regression. Mach. Learn. 2020, 109, 1179–1204. [Google Scholar] [CrossRef]
- Louppe, G. Understanding Random Forests: From Theory to Practice. Ph.D. Thesis, University of Liege, Liège, Belgique, 2014. [Google Scholar]
- Šandera, J.; Štych, P. Selecting Relevant Biological Variables Derived from Sentinel-2 Data for Mapping Changes from Grassland to Arable Land Using Random Forest Classifier. Land 2020, 9, 420. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree Species Classification with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Calle, M.L.; Urrea, V. Letter to the editor: Stability of Random Forest importance measures. Brief. Bioinform. 2011, 12, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Böck, S.; Einzmann, K.; Vuolo, F.; Pinnel, N.; Wallner, A.; Atzberger, C. Fractional cover mapping of spruce and pine at 1 ha resolution combining very high and medium spatial resolution satellite imagery. Remote Sens. Environ. 2018, 204, 690–703. [Google Scholar] [CrossRef] [Green Version]
- Schultz, B.; Immitzer, M.; Formaggio, A.; Sanches, I.; Luiz, A.; Atzberger, C. Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482–14508. [Google Scholar] [CrossRef] [Green Version]
- Agricultural Practices | Sen4Cap. Available online: http://esa-sen4cap.org/content/agricultural-practices (accessed on 21 May 2021).
- Voormansik, K.; Zalite, K.; Sünter, I.; Tamm, T.; Koppel, K.; Verro, T.; Brauns, A.; Jakovels, D.; Praks, J. Separability of Mowing and Ploughing Events on Short Temporal Baseline Sentinel-1 Coherence Time Series. Remote Sens. 2020, 12, 3784. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Voormansik, K.; Jagdhuber, T.; Olesk, A.; Hajnsek, I.; Papathanassiou, K.P. Towards a detection of grassland cutting practices with dual polarimetric TerraSAR-X data. Int. J. Remote Sens. 2013, 34, 8081–8103. [Google Scholar] [CrossRef]
- Voormansik, K.; Jagdhuber, T.; Zalite, K.; Noorma, M.; Hajnsek, I. Observations of Cutting Practices in Agricultural Grasslands Using Polarimetric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1382–1396. [Google Scholar] [CrossRef]
- Taravat, A.; Wagner, M.; Oppelt, N. Automatic Grassland Cutting Status Detection in the Context of Spatiotemporal Sentinel-1 Imagery Analysis and Artificial Neural Networks. Remote Sens. 2019, 11, 711. [Google Scholar] [CrossRef] [Green Version]
- Stendardi, L.; Karlsen, S.; Niedrist, G.; Gerdol, R.; Zebisch, M.; Rossi, M.; Notarnicola, C. Exploiting Time Series of Sentinel-1 and Sentinel-2 Imagery to Detect Meadow Phenology in Mountain Regions. Remote Sens. 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
- de Vroey, M.; Radoux, J.; Defourny, P. Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations. Remote Sens. 2021, 13, 348. [Google Scholar] [CrossRef]
- Price, K.P.; Guo, X.; Stiles, J.M. Comparison of Landsat TM and ERS-2 SAR data for discriminating among grassland types and treatments in eastern Kansas. Comput. Electron. Agric. 2002, 37, 157–171. [Google Scholar] [CrossRef]
- Sen4Cap. Available online: http://esa-sen4cap.org/ (accessed on 21 June 2021).
- Gómez Giménez, M.; de Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sens. Environ. 2017, 198, 126–139. [Google Scholar] [CrossRef]
- Asam, S.; Klein, D.; Dech, S. Estimation of grassland use intensities based on high spatial resolution LAI time series. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, XL-7/W3, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Grabska, E.; Frantz, D.; Ostapowicz, K. Evaluation of machine learning algorithms for forest stand species mapping using Sentinel-2 imagery and environmental data in the Polish Carpathians. Remote Sens. Environ. 2020, 251, 112103. [Google Scholar] [CrossRef]
Grassland Class | Palaearctic Classification (PHYSIS Database) |
---|---|
extensive | 34.1, 34.2, 34.3, 34.7, 35, 36, 37.2, 37.3, 38.2 |
intensive | 38.1, 38.11, 38.13, 81, 81.1, 81.2 |
(a) | Grassland class | Predicted | |||
2017 | Extensive | Intensive | Σ | UA | |
Actual | extensive | 361 | 130 | 491 | 0.735 |
intensive | 66 | 702 | 768 | 0.914 | |
Σ | 427 | 832 | 1259 | ||
PA | 0.845 | 0.843 | OA | 0.844 | |
Kappa | 0.665 | ||||
(b) | Grassland class | Predicted | |||
2018 | extensive | intensive | Σ | UA | |
Actual | extensive | 146 | 345 | 491 | 0.297 |
intensive | 32 | 736 | 768 | 0.958 | |
Σ | 178 | 1081 | 1259 | ||
PA | 0.820 | 0.680 | OA | 0.700 | |
Kappa | 0.289 | ||||
(c) | Grassland class | Predicted | |||
2019 | extensive | intensive | Σ | UA | |
Actual | extensive | 308 | 183 | 491 | 0.627 |
intensive | 62 | 706 | 768 | 0.919 | |
Σ | 370 | 889 | 1259 | ||
PA | 0.832 | 0.794 | OA | 0.805 | |
Kappa | 0.572 |
Grassland Class | Predicted | ||||
---|---|---|---|---|---|
Extensive | Intensive | Σ | UA | ||
Actual | extensive | 316 | 175 | 491 | 0.644 |
intensive | 93 | 675 | 768 | 0.879 | |
Σ | 409 | 850 | 1259 | ||
PA | 0.773 | 0.794 | OA | 0.787 | |
Kappa | 0.539 |
Year | The Most Informative Feature | MDA |
---|---|---|
2017 | NDVI (2017-04-10) | 42.3 |
Slope | 40.5 | |
NDVI (2017-04-30) | 25.3 | |
NDVI (2017-04-05) | 24.5 | |
NDVI (2017-04-15) | 25.8 | |
NDVI (2017-05-05) | 24.3 | |
Elevation | 22.7 | |
NDVI (2017-05-10) | 22.5 | |
NDVI (2017-05-20) | 20.9 | |
NDVI (2017-05-25) | 19.8 | |
NDVI (2017-04-20) | 20.3 | |
NDVI (2017-05-15) | 19.1 | |
coherence VV descending (2017-10-28) | 18.0 | |
NDVI (2017-05-30) | 18.4 | |
NDVI (2017-04-25) | 16.5 | |
NDVI (2017-09-22) | 15.3 | |
NDVI (2017-06-04) | 16.2 | |
NDVI (2017-06-24) | 15.2 | |
coherence VV ascending (2017-07-25) | 14.3 | |
coherence VV descending (2017-05-06) | 16.0 | |
2018 | Slope | 93.1 |
NDVI (2018-04-30) | 51.5 | |
Elevation | 38.9 | |
NDVI (2018-04-20) | 35.1 | |
NDVI (2018-10-22) | 35.1 | |
coherence VV descending (2018-09-18) | 30.2 | |
coherence VV descending (2018-04-01) | 30.2 | |
NDVI (2018-04-25) | 32.2 | |
NDVI (2018-05-15) | 25.2 | |
2019 | Slope | 55.9 |
NDVI (2019-04-10) | 45.8 | |
NDVI (2019-04-20) | 39.0 | |
NDVI (2019-04-15) | 29.3 | |
Elevation | 32.2 | |
NDVI (2019-06-19) | 29.7 | |
NDVI (2019-06-09) | 30.9 | |
NDVI (2019-05-10) | 25.6 |
(a) | Grassland Class | Predicted | |||
2017 | Extensive | Intensive | Σ | UA | |
Actual | extensive | 437 | 54 | 491 | 0.890 |
intensive | 52 | 716 | 768 | 0.932 | |
Σ | 489 | 770 | 1259 | ||
PA | 0.894 | 0.930 | OA | 0.916 | |
Kappa | 0.823 | ||||
(b) | Grassland class | Predicted | |||
2018 | extensive | intensive | Σ | UA | |
Actual | extensive | 359 | 132 | 491 | 0.731 |
intensive | 55 | 713 | 768 | 0.928 | |
Σ | 414 | 845 | 1259 | ||
PA | 0.867 | 0.844 | OA | 0.852 | |
Kappa | 0.679 | ||||
(c) | Grassland class | Predicted | |||
2019 | extensive | intensive | Σ | UA | |
Actual | extensive | 411 | 80 | 491 | 0.837 |
intensive | 49 | 719 | 768 | 0.936 | |
Σ | 460 | 799 | 1259 | ||
PA | 0.894 | 0.900 | OA | 0.898 | |
Kappa | 0.782 |
(a) | Grassland Class | Predicted | |||
2017 | Extensive | Intensive | Σ | UA | |
Actual | extensive | 445 | 46 | 491 | 0.906 |
intensive | 41 | 727 | 768 | 0.947 | |
Σ | 486 | 773 | 1259 | ||
PA | 0.916 | 0.941 | OA | 0.931 | |
Kappa | 0.855 | ||||
(b) | Grassland class | Predicted | |||
2018 | extensive | intensive | Σ | UA | |
Actual | extensive | 395 | 96 | 491 | 0.805 |
intensive | 54 | 714 | 768 | 0.930 | |
Σ | 449 | 810 | 1259 | ||
PA | 0.880 | 0.882 | OA | 0.881 | |
Kappa | 0.746 | ||||
(c) | Grassland class | Predicted | |||
2019 | extensive | intensive | Σ | UA | |
Actual | extensive | 429 | 62 | 491 | 0.874 |
intensive | 44 | 724 | 768 | 0.943 | |
Σ | 473 | 786 | 1259 | ||
PA | 0.910 | 0.9211 | OA | 0.916 | |
Kappa | 0.822 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potočnik Buhvald, A.; Račič, M.; Immitzer, M.; Oštir, K.; Veljanovski, T. Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables. Remote Sens. 2022, 14, 3387. https://doi.org/10.3390/rs14143387
Potočnik Buhvald A, Račič M, Immitzer M, Oštir K, Veljanovski T. Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables. Remote Sensing. 2022; 14(14):3387. https://doi.org/10.3390/rs14143387
Chicago/Turabian StylePotočnik Buhvald, Ana, Matej Račič, Markus Immitzer, Krištof Oštir, and Tatjana Veljanovski. 2022. "Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables" Remote Sensing 14, no. 14: 3387. https://doi.org/10.3390/rs14143387
APA StylePotočnik Buhvald, A., Račič, M., Immitzer, M., Oštir, K., & Veljanovski, T. (2022). Grassland Use Intensity Classification Using Intra-Annual Sentinel-1 and -2 Time Series and Environmental Variables. Remote Sensing, 14(14), 3387. https://doi.org/10.3390/rs14143387