Location Accuracy Improvement of Long-range Lightning Detection Network In China by Compensating Ground Wave Propagation Delay
Abstract
:1. Introduction
2. Data and Methods
2.1. Lightning Data and Location Algorithm of Our Long-range Lightning Detection Network
2.2. The Advanced Direction Time Lightning Detection System (ADTD)
2.3. Propagation Correction
3. Performance Analysis by the Hyperbolic Geometry
4. Results
4.1. Relative Location Accuracy
4.2. Location Offsets
5. Discussion
5.1. Effect of the Terrain on the Location Accuracy
5.2. Relationship of the Propagation Speed Versus Distance
5.3. Thresholds of Time Difference and Spatial Difference
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | Aletai |
CD | Chengdu |
CF | Chifeng |
CH | Conghua |
CWP | Caiwopu |
GY | Guiyang |
JQ | Jiuquan |
KS | Kashi |
LS | Lasa |
NJ | Nanjing |
QM | Qiemu |
TY | Taiyuan |
WH | Wuhan |
WZ | Wenzhou |
XM | Xiamen |
XSBN | Xishuangbanna |
XW | Xuwen |
YC | Yinchuan |
References
- Cummins, K.L.; Murphy, M.J. An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN. IEEE Trans. Electromagn. Compat. 2009, 51, 499–518. [Google Scholar] [CrossRef]
- Shao, X.-M.; Lay, E.H.; Jacobson, A.R. Reduction of Electron Density in the Night-Time Lower Ionosphere in Response to a Thunderstorm. Nat. Geosci. 2013, 6, 29–33. [Google Scholar] [CrossRef]
- Pessi, A.T.; Businger, S.; Cummins, K.L.; Demetriades, N.W.S.; Murphy, M.; Pifer, B. Development of a Long-Range Lightning Detection Network for the Pacific: Construction, Calibration, and Performance. J. Atmos. Ocean. Technol. 2009, 26, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Cummins, K.L.; Murphy, M.J.; Bardo, E.A.; Hiscox, W.L.; Pyle, R.B.; Pifer, A.E. A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. 1998, 103, 9035–9044. [Google Scholar] [CrossRef]
- Nag, A.; Murphy, M.J.; Schulz, W.; Cummins, K.L. Lightning Locating Systems: Insights on Characteristics and Validation Techniques. Earth Space Sci. 2015, 2, 65–93. [Google Scholar] [CrossRef]
- Bennett, A.J.; Gaffard, C.; Nash, J.; Callaghan, G.; Atkinson, N.C. The Effect of Modal Interference on VLF Long-Range Lightning Location Networks Using the Waveform Correlation Technique. J. Atmos. Ocean. Technol. 2011, 28, 993–1006. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Jing, X.; Li, D.; Wang, Z. Propagation Effect of a Fractal Rough Ground Boundary on the Lightning-Radiated Vertical Electric Field. Atmos. Res. 2012, 7, 202–208. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Li, D.; Wang, Z. Propagation Effects of a Fractal Rough Ocean Surface on the Vertical Electric Field Generated by Lightning Return Strokes. J. Electrost. 2012, 70, 54–59. [Google Scholar] [CrossRef]
- Cooray, V.; Fernando, M.; Sörensen, T.; Götschl, T.; Pedersen, A. Propagation of Lightning Generated Transient Electromagnetic Fields over Finitely Conducting Ground. J. Atmos. Sol. Terr. Phys. 2000, 62, 583–600. [Google Scholar] [CrossRef]
- Cooray, V. Derivation of Return Stroke Parameters from the Electric and Magnetic Field Derivatives. Geophys. Res. Lett. 1989, 16, 61–64. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, M.; Zhu, B.; Du, Y. An Improved Ray Theory and Transfer Matrix Method-Based Model for Lightning Electromagnetic Pulses Propagating in Earth-Ionosphere Waveguide and Its Applications: Ray Theory-Based Model For Lemp In Eiwg. J. Geophys. Res. Atmos. 2017, 122, 712–727. [Google Scholar] [CrossRef]
- Hou, W.; Azadifar, M.; Rubinstein, M.; Rachidi, F.; Zhang, Q. The Polarity Reversal of Lightning-Generated Sky Wave. J. Geophys. Res. Atmos. 2020, 125, e2020JD032448. [Google Scholar] [CrossRef]
- Jacobson, A.R.; Shao, X.-M.; Lay, E. Time Domain Waveform and Azimuth Variation of Ionospherically Reflected VLF/LF Radio Emissions from Lightning: Azimuth Variations of Vlf Skywave. Radio Sci. 2012, 47, RS4980. [Google Scholar] [CrossRef]
- Chronis, T.G.; Anagnostou, E.N. Error Analysis for a Long-Range Lightning Monitoring Network of Ground-Based Receivers in Europe: Long-Range Lightning Retrieval Error. J. Geophys. Res. 2003, 108, 4779. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.; Atkinson, N.C.; Hibbett, E.; Callaghan, G.; Taylor, P.L.; Odhams, P.; Jenkins, D.; Keogh, S.; Gaffard, C.; Walker, E. The new Met Office ATDNET lightning detection system. In Proceedings of the WMO Technical Conference on Instruments and Observing Methods, Geneva, Switzerland, 4–6 December 2006; Volume 94. [Google Scholar]
- Lee, A.C.L. An Experimental Study of the Remote Location of Lightning Flashes Using a VLF Arrival Time Difference Technique. Q. J. R. Met. Soc. 1986, 112, 203–229. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Q.; Zhou, X.; Xiao, F.; Yuan, S.; Chang, S.; He, J.; Wang, H.; Huang, Q. Asia-Pacific Lightning Location Network (APLLN) and Preliminary Performance Assessment. Remote Sens. 2020, 12, 1537. [Google Scholar] [CrossRef]
- Said, R.K.; Inan, U.S.; Cummins, K.L. Long-Range Lightning Geolocation Using a VLF Radio Atmospheric Waveform Bank. J. Geophys. Res. 2010, 115, D23108. [Google Scholar] [CrossRef] [Green Version]
- Dowden, R.L.; Brundell, J.B.; Rodger, C.J. VLF Lightning Location by Time of Group Arrival (TOGA) at Multiple Sites. J. Atmos. Sol.-Terr. Phys. 2002, 64, 817–830. [Google Scholar] [CrossRef]
- Schulz, W.; Diendorfer, G. Evaluation of a lightning location algorithm using an elevation model. In Proceedings of the 25th International Conference on Lightning Protection (ICLP), Rhodos, Greece, 18–22 September 2000; Available online: https://www.aldis.at/fileadmin/user_upload/aldis/publication/2000/4_ICLP2000_Schulz.pdf (accessed on 13 June 2022).
- Gu, J.; Zhang, Q.; Zhang, J.; Hou, W.; Yin, Q.; Huang, S. Effect of Real Terrain on the Lightning Magnetic Fields and Location Accuracy in Yunnan, China. IEEE Trans. Electromagn. Compat. 2021, 63, 1491–1500. [Google Scholar] [CrossRef]
- Cooray, V. Effects of Propagation on the Return Stroke Radiation Fields. Radio Sci. 1987, 22, 757–768. [Google Scholar] [CrossRef]
- Honma, N.; Suzuki, F.; Miyake, Y.; Ishii, M.; Hidayat, S. Propagation Effect on Field Waveforms in Relation to Time-of-Arrival Technique in Lightning Location. J. Geophys. Res. 1998, 103, 14141–14145. [Google Scholar] [CrossRef]
- Honma, N.; Cummins, K.L.; Murphy, M.J.; Pifer, A.E.; Rogers, T. Improved Lightning Locations in the Tohoku Region of Japan Using Propagation and Waveform Onset Corrections. IEEJ Trans. Power Energy 2013, 133, 195–202. [Google Scholar] [CrossRef]
- Schueler, J.R.; Thomson, E.M. Estimating Ground Conductivity and Improving Lightning Location Goodness of Fit by Compensating Propagation Effects: PROPAGATION EFFECTS. Radio Sci. 2006, 41, RS1001. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J.; Cramer, J.A.; Scheftic, W.; Demetriades, N.; Nag, A. Location accuracy improvements using propagation corrections: A case study of the US National Lightning Detection Network. In Proceedings of the 21st International Lightning Detection Conference, Orlando, FL, USA, 19–22 April 2010; Vaisala, Inc.: Tucson, AZ, USA, 2010; pp. 19–20. Available online: https://www.vaisala.com/sites/default/files/documents/6.Cummins%2C%20Murphy%2C%20Cramer_0.pdf (accessed on 13 June 2022).
- Zhu, Y.; Lyu, W.; Cramer, J.; Rakov, V.; Bitzer, P.; Ding, Z. Analysis of Location Errors of the U.S. National Lightning Detection Network Using Lightning Strikes to Towers. J. Geophys. Res. Atmos. 2020, 125, JD2530. [Google Scholar] [CrossRef]
- Li, D.; Azadifar, M.; Rachidi, F.; Rubinstein, M.; Diendorfer, G.; Sheshyekani, K.; Zhang, Q.; Wang, Z. Analysis of Lightning Electromagnetic Field Propagation in Mountainous Terrain and Its Effects on ToA-Based Lightning Location Systems: Lightning Em Field Propagation. J. Geophys. Res. Atmos. 2016, 121, 895–911. [Google Scholar] [CrossRef]
- Li, D.; Rubinstein, M.; Rachidi, F.; Diendorfer, G.; Schulz, W.; Lu, G. Location Accuracy Evaluation of ToA-Based Lightning Location Systems Over Mountainous Terrain: ToA-Based LLS Over Mountainous Terrain. J. Geophys. Res. Atmos. 2017, 122, 11760–11775. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Dai, B.; Zhou, J.; Zhang, J.; Zhang, Q.; Yang, J.; Wang, Y.; Gu, J.; Hou, W.; Zou, B.; et al. Preliminary Application of Long-Range Lightning Location Network with Equivalent Propagation Velocity in China. Remote Sens. 2022, 14, 560. [Google Scholar] [CrossRef]
- Proctor, D.E. A Hyperbolic System for Obtaining VHF Radio Pictures of Lightning. J. Geophys. Res. 1971, 76, 1478–1489. [Google Scholar] [CrossRef]
- Thomas, R.J. Accuracy of the Lightning Mapping Array. J. Geophys. Res. 2004, 109, D14207. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, Q.; Ma, Q.; Chang, S.; He, J.; Wang, H.; Zhou, X.; Xiao, F.; Gao, C. Classification of VLF/LF Lightning Signals Using Sensors and Deep Learning Methods. Sensors 2020, 20, 1030. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.A.; Wait, J.R. Ground Wave Attenuation Function for a Spherical Earth with Arbitrary Surface Impedance. Radio Sci. 1980, 15, 637–643. [Google Scholar] [CrossRef]
- Zhang, Q.; Hou, W.; Ji, T.; He, L.; Su, J. Validation and Revision of Far-Field-Current Relationship for the Lightning Strike to Electrically Short Objects. J. Atmos. Sol.-Terr. Phys. 2014, 120, 41–50. [Google Scholar] [CrossRef]
- Wait, J.R. Recent Analytical Investigations of Electromagnetic Ground Wave Propagation over Inhomogeneous Earth Models. Proc. IEEE 1974, 62, 1061–1072. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, Q.; Zhang, J.; Wang, L.; Shen, Y. A New Approximate Method for Lightning-Radiated ELF/VLF Ground Wave Propagation over Intermediate Ranges. Int. J. Antennas Propag. 2018, 2018, 9353294. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.-M.; Jacobson, A.R. Model Simulation of Very Low-Frequency and Low-Frequency Lightning Signal Propagation Over Intermediate Ranges. IEEE Trans. Electromagn. Compat. 2009, 51, 519–525. [Google Scholar] [CrossRef]
- Rachidi, F.; Nucci, C.A. On the Master, Uman, Lin, Standler and the Modified Transmission Line Lightning Return Stroke Current Models. J. Geophys. Res. 1990, 95, 20389. [Google Scholar] [CrossRef]
- Nucci, C.A. On lightning return stroke models for LEMP calculations. In Proceedings of the 19th International Conference on Lightning Protection, Graz, Austria, 25–29 April 1988; Volume 179, pp. 91–96. [Google Scholar]
- Rachidi, F.; Janischewskyj, W.; Hussein, A.M.; Nucci, C.A.; Guerrieri, S.; Kordi, B.; Chang, J.S. Current and Electromagnetic Field Associated with Lightning-Return Strokes to Tall Towers. IEEE Trans. Electromagn. Compat. 2001, 43, 356–367. [Google Scholar] [CrossRef]
- Cummer, S.A. An Analysis of New and Existing FDTD Methods for Isotropic Cold Plasma and a Method for Improving Their Accuracy. IEEE Trans. Antennas Propagat. 1997, 45, 392–400. [Google Scholar] [CrossRef] [Green Version]
- Uman, M.A.; Swanberg, C.E.; Tiller, J.A.; Lin, Y.T.; Krider, E.P. Effects of 200 Km Propagation on Florida Lightning Return Stroke Electric Fields. Radio Sci. 1976, 11, 985–990. [Google Scholar] [CrossRef]
- Srivastava, A.; Tian, Y.; Qie, X.; Wang, D.; Sun, Z.; Yuan, S.; Wang, Y.; Chen, Z.; Xu, W.; Zhang, H.; et al. Performance Assessment of Beijing Lightning Network (BLNET) and Comparison with Other Lightning Location Networks across Beijing. Atmos. Res. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Liu, Z.; Koh, K.L.; Mezentsev, A.; Enno, S.-E.; Sugier, J.; Füllekrug, M. Variable Phase Propagation Velocity for Long-Range Lightning Location System: Variable Velocity for Lightning Location. Radio Sci. 2016, 51, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Schueler, J.R.; Thomson, E.M. Improving Lightning Location Goodness of Fit by Compensating Propagation Effects of Stratified Ground: Improving Lightning Location Goodness of Fit. Radio Sci. 2007, 42, 2–10. [Google Scholar] [CrossRef]
Propagation Speed | Effective Ratio | Averages Relative Deviation (km) | Median Relative Deviation (km) | |
---|---|---|---|---|
Uncorrected | c | / | 7.74 | 7.28 |
Corrected with the reference speed of 0.998 | 0.998 1 | 72.72% | 4.35 | 2.34 |
74.69% | 4.32 | 2.46 | ||
1.002 | 69.34% | 4.51 | 2.72 | |
Equivalent propagation velocity method | Variable 2 | 59.83% | 6.36 | 2.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhou, J.; Li, J.; Gu, J.; Zhang, Q.; Dai, B.; Wang, Y.; Wang, J.; Zhong, Y.; Li, Q. Location Accuracy Improvement of Long-range Lightning Detection Network In China by Compensating Ground Wave Propagation Delay. Remote Sens. 2022, 14, 3397. https://doi.org/10.3390/rs14143397
Zhang J, Zhou J, Li J, Gu J, Zhang Q, Dai B, Wang Y, Wang J, Zhong Y, Li Q. Location Accuracy Improvement of Long-range Lightning Detection Network In China by Compensating Ground Wave Propagation Delay. Remote Sensing. 2022; 14(14):3397. https://doi.org/10.3390/rs14143397
Chicago/Turabian StyleZhang, Junchao, Jiahao Zhou, Jie Li, Jiaying Gu, Qilin Zhang, Bingzhe Dai, Yao Wang, Jialei Wang, Yuqing Zhong, and Qingda Li. 2022. "Location Accuracy Improvement of Long-range Lightning Detection Network In China by Compensating Ground Wave Propagation Delay" Remote Sensing 14, no. 14: 3397. https://doi.org/10.3390/rs14143397