Shortwave Infrared Multi-Angle Polarization Imager (MAPI) Onboard Fengyun-3 Precipitation Satellite for Enhanced Cloud Characterization
Abstract
:1. Introduction
2. MAPI Onboard FY-3 Precipitation Measurement Satellite
2.1. FY-3 Precipitation Measurement Satellite Program
2.2. Overview of MAPI
2.3. Radiometric Model and In-Flight Calibration Strategy
3. Advantage the Observation of MAPI
3.1. Improving the Description of Cloud Characteristics
3.2. Optimizing Aerosol Characterization
3.3. Unique Advantages of Non-Sun-Synchronous Orbits
3.4. Collaborative Observation of the Optical Instruments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Parameters of Aerosol Simulation Experiments
Equipment Parameters | |
Central wavelength/nm | 490 nm, 670 nm, 865 nm, 1030 nm, 1640 nm |
Polarization | I, Q, U |
Pol. Cal. Error | 0.02 |
Rad. Cal. Error | 5% (VNIR), 5% (SWIR) |
Multi-angle | 15 |
Scenarios | (550 nm) | (550 nm) | /μm | ||
Fine-dominated | 1.44 (0.15) | 0.011 (0.01) | 0.21 (80%) | 0.25 (80%) | 0.8 |
Coarse-dominated | 1.55 (0.15) | 0.003 (0.005) | 1.90 (80%) | 0.41 (80%) | 0.2 |
Surface Type | fiso (λ) | k1 | k2 |
Bare soil | 0.105 (0.0224), 0.276 (0.0207), 0.355 (0.2119), 0.415 (0.137), 0.446 (0.126) | 0.158 (80%) | 0.547 (80%) |
References
- Parol, F.; Buriez, J.C.; Vanbauce, C.; Riédi, J.; Doutriaux-Boucher, M.; Vesperini, M.; Sèze, G.; Couvert, P.; Viollier, M.; Bréon, F.M. Review of capabilities of multi-angle and polarization cloud measurements from POLDER. Adv. Space Res. 2004, 33, 1080–1088. [Google Scholar] [CrossRef]
- Husi, L.; Hiroshi, I.; Jerome, R.; Takashi, Y.; Laurent, C.; Anthony, J.; Takashi, M.; Miho, S. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission. Atmos. Chem. Phys. 2016, 16, 12287–12303. [Google Scholar]
- Luo, S.; Lu, C.; Liu, Y.; Gao, W.; Zhu, L.; Xu, X.; Li, J.; Guo, X. Consideration of initial cloud droplet size distribution shapes in quantifying different entrainment-mixing mechanisms. J. Geophys. Res. Atmos. 2021, 126, e2020JD034455. [Google Scholar] [CrossRef]
- Zhang, M.; Teng, S.; Di, D.; Hu, X.; Letu, H.; Min, M.; Liu, C. Information Content of Ice Cloud Properties from Multi-Spectral, -Angle and -Polarization Observations. Remote Sens. 2020, 12, 2548. [Google Scholar] [CrossRef]
- Hasekamp, O.P.; Landgraf, J. Retrieval of aerosol properties over land surfaces: Capabilities of multiple-viewing-angle intensity and polarization measurements. Appl. Opt. 2007, 46, 3332–3344. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, Y.; Fan, H.; Huang, J.; Fu, Y.; Zhang, X.; Kang, S.; Cong, Z.; Letu, H.; Menenti, M. Aerosol Characteristics and Impacts on Weather and Climate over Tibetan Plateau. Natl. Sci. Rev. 2020, 7, 492–495. [Google Scholar] [CrossRef]
- Mishchenko, M.; Travis, L. Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight. J. Geophys. Res. 1997, 102, 16989–17013. [Google Scholar] [CrossRef]
- Dubovik, O.; Li, Z.; Mishchenko, M.I.; Tanré, D.; Karol, Y.; Bojkov, B.; Cairns, B.; Diner, D.J.; Espinosa, W.R.; Goloub, P.; et al. Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and perspectives. J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 474–511. [Google Scholar] [CrossRef]
- Shang, H.; Letu, H.; Bréon, F.-M.; Riedi, J.; Ma, R.; Wang, Z.; Nakajima, T.; Wang, Z.; Chen, L. An improved algorithm of cloud droplet size distribution from POLDER polarized measurements. Remote Sens. Environ. 2019, 228, 61–74. [Google Scholar] [CrossRef]
- Li, Z.; Hou, W.; Hong, J.; Fan, C.; Wei, Y.; Liu, Z.; Lei, X.; Qiao, Y.; Hasekamp, O.P.; Fu, G.; et al. The polarization crossfire (PCF) sensor suite focusing on satellite remote sensing of fine particulate matter PM2. 5 from space J. Quant. Spectrosc. Radiat. Transf. 2022, 286, 108217. [Google Scholar] [CrossRef]
- Levis, A.; Davis, A.B.; Schechner, Y.Y.; Loveridge, J. 3D cloud tomography and droplet size retrieval from multi-angle polarimetric imaging of scattered sunlight from above. In Proceedings of the SPIE Polarization Science and Remote Sensing X, San Diego, CA, USA, 1 August 2021; p. 11833-05. [Google Scholar]
- Li, J.; Ma, J.; Li, C.; Wang, Y.; Li, Z.; Hong, J. Multi-information collaborative cloud identification algorithm in Gaofen-5 Directional Polarimetric Camera imagery. J. Quant. Spectrosc. Radiat. Transf. 2021, 261, 107439. [Google Scholar] [CrossRef]
- Leroy, M.; Deuzé, J.L.; Bréon, F.M.; Hautecoeur, O.; Herman, M.; Buriez, J.C.; Tanre, D.; Bouffiès, S.; Chazette, P.; Roujean, J.L. Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS. J. Geophys. Res. 1997, 102, 17023–17037. [Google Scholar] [CrossRef]
- Fan, X.; Goloub, P.; Deuzé, J.-L.; Chen, H.; Zhang, W.; Tanré, D.; Li, Z. Evaluation of PARASOL aerosol retrieval over North East Asia. Remote Sens. Environ. 2008, 112, 697–707. [Google Scholar] [CrossRef]
- Tanré, D.; Bréon, F.M.; Deuzé, J.L.; Dubovik, O.; Ducos, F.; François, P.; Goloub, P.; Herman, M.; Lifermann, A.; Waquet, F. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission. Atmos. Meas. Tech. 2011, 4, 1383–1395. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V.; Diner, D.J.; Crean, K.A.; Holben, B. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. 2005, 110, D10S04. [Google Scholar] [CrossRef]
- Fougnie, B. Improvement of the PARASOL radiometric in-flight calibration based on synergy between various methods using natural targets. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2140–2152. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, X.; Yin, D.; Gu, M. Onboard Polarization Calibration Technique of Multi-Angle Polarization Imager Based on Sun Glint from Ocean. Acta Opt. Sin. 2020, 40, 1528002. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.; Guo, Z.; Huang, Y.; Fan, H.; Li, W. A cloud detection scheme for the Chinese Carbon Dioxide Observation Satellite (TANSAT). Adv. Atmos. Sci. 2017, 34, 16–25. [Google Scholar] [CrossRef]
- Li, Z.; Hou, W.; Hong, J.; Zheng, F.; Luo, D.; Wang, J.; Gu, X.; Qiao, Y. Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 21–37. [Google Scholar] [CrossRef]
- Fougnie, B.; Marbach, T.; Lacan, A.; Lang, R.; Schlüssel, P.; Poli, G.; Munro, R.; Couto, A.B. The multi-viewing multi-channel multi-polarisation imager—Overview of the 3MI polarimetric mission for aerosol and cloud characterization. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 23–32. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Shen, H.; Li, P. A variational gradient-based fusion method for visible and SWIR imagery. Photogramm. Eng. Remote Sens. 2012, 78, 947–958. [Google Scholar] [CrossRef]
- Gao, B.; Goetz, A.; Wiscombe, W. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 μm water vapor band. Geophys. Res. Lett. 1993, 20, 301–304. [Google Scholar] [CrossRef]
- Sun, L.; Mi, X.; Wei, J.; Wang, J.; Tian, X.; Yu, H.; Gan, P. A cloud detection algorithm-generating method for remote sensing data at visible to short-wave infrared wavelengths. ISPRS J. Photogramm. Remote Sens. 2017, 124, 70–88. [Google Scholar] [CrossRef]
- Min, M.; Matthias, J.; Eduardo, H.; Ana, P.; Barry, M.; Fred, M.; Samir, A. Improved MODIS aerosol retrieval using modified VIS/SWIR surface albedo ratio over urban scenes. IEEE Trans. Geosci. Remote Sens. 2010, 48, 983–1000. [Google Scholar]
- Hou, W.; Li, Z.; Wang, J.; Xu, X.; Goloub, P.; Qie, L. Improving remote sensing of aerosol microphysical properties by near-infrared polarimetric measurements over vegetated land: Information content analysis. J. Geophys. Res. Atmos. 2018, 123, 2215–2243. [Google Scholar] [CrossRef]
- Dlugach, J.M.; Mishchenko, M.I.; Veles, O.A. Applying orbital multi-angle photopolarimetric observations to study properties of aerosols in the Earth’s atmosphere: Implications of measurements in the 1.378 µm spectral channel to retrieve microphysical characteristics and composition of stratospheric aerosols. J. Quant. Spectrosc. Radiat. Transf. 2021, 261, 107483. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, L.; Xian, D.; Xu, Z. Recent progress of Fengyun meteorology satellites. Chin. J. Space Sci. 2020, 40, 788–796. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, Q.; Hu, X.; Gu, S.; Yang, L.; Min, M.; Chen, L.; Xu, N.; Sun, L.; Bai, W.; et al. Latest progress of the Chinese meteorological satellite program and core data processing technologies. Adv. Atmos. Sci. 2019, 36, 1027–1045. [Google Scholar] [CrossRef]
- Gu, S.N.; Wu, Q.; Yin, H.; Shang, J.; Sun, F.; Chen, L.; Zhang, P. Analysis and prospect of precipitation detection capability of Fengyun-3 meteorological satellite. J. Mar. Meteorol. 2022, 42, 1–10. [Google Scholar]
- Bret-Dibat, T.; Andre, Y.; Laherrere, J.M. Preflight calibration of the POLDER instrument. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 29 September 1995; Volume 2553, pp. 218–231. [Google Scholar]
- Hagolle, O.; Goloub, P.; Deschamps, P.-Y.; Cosnefroy, H.; Briottet, X.; Bailleul, T.; Nicolas, J.-M.; Parol, F.; Lafrance, B.; Herman, M. Results of POLDER in-flight calibration. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1550–1566. [Google Scholar] [CrossRef]
- Toubbe, B.; Bailleul, T.; Deuze, J.L.; Goloub, P.; Hagolle, O.; Herman, M. In-flight calibration of the POLDER polarized channels using the Sun’s glitter. IEEE Trans. Geosci. Remote Sens. 1999, 37, 513–524. [Google Scholar] [CrossRef]
- Buriez, J.C.; Vanbauce, C.; Parol, F.; Goloub, P.; Herman, M.; Bonnel, B.; Fouquart, Y.; Couvert, P.; Seze, G. Cloud detection and derivation of cloud properties from POLDER. Int. J. Remote Sens. 1997, 18, 2785–2813. [Google Scholar] [CrossRef]
- Shang, H.; Letu, H.; Chen, L.; Riedi, J.; Ma, R.; Wei, L.; Labonnote, L.C.; Hioki, S.; Liu, C.; Wang, Z.; et al. Cloud thermodynamic phase detection using a directional polarimetric camera DPC. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107–179. [Google Scholar] [CrossRef]
- Dubovik, O.; Fuertes, D.; Litvinov, P.; Lopatin, A.; Lapyonok, T.; Doubovik, I.; Xu, F.; Ducos, F.; Chen, C.; Torres, B.; et al. A Comprehensive Description of Multi—Term LSM for Applying Multiple a Priori Constraints in Problems of Atmospheric Remote Sensing: GRASP Algorithm, Concept, and Applications. Front. Remote Sens. 2021, 2, 706851. [Google Scholar] [CrossRef]
Channel | POLDER | MAI/TG | CAPI/TanSat | DPC/GF5 | 3MI/ESP | MAPI/FY3 | Main Applications | |
---|---|---|---|---|---|---|---|---|
Observation mode | Area array wide angles | Area array wide angles | Line array push broom single angle | Area array wide angles | Area array wide angles | Area array wide angles | ||
Polarized | VIS-NIR | 410 | aerosol | |||||
443 | aerosol | |||||||
490 | 490 | 490 | aerosol/cloud/surface | |||||
565 | 555 | surface albedo | ||||||
670 | 670 | 670 | 670 | 670 | aerosol | |||
865 | 865 | 865 | 865 | aerosol/cloud | ||||
SWIR | 1030 | cloud/aerosol/surface | ||||||
1370 | 1370 | cirrus | ||||||
1640 | 1650 | 1640 | cloud/aerosol/surface | |||||
2130 | cloud/surface | |||||||
Non-polarized | VIS-NIR | 443 | 380 | 443 | aerosol | |||
565 | 870 | 565 | surface albedo | |||||
763 | 763 | 763 | 763 | cloud/aerosol height | ||||
765 | 765 | 765 | 754 | cloud/aerosol height | ||||
910 | 910 | 910 | 910 | water vapor | ||||
SWIR | 1020 | 1030 | cloud/aerosol/surface | |||||
1375 | 1370 | cirrus | ||||||
1640 | cloud/aerosol/surface |
Type | Specifications |
---|---|
Detector | Two-dimensional InGaAs |
Spectral wavelength | SWIR 1030 nm, 1370 nm, 1640 nm |
Orientation of the polarizer | −60°/0°/60° |
Polarization vector | Stokes vector I/Q/U |
Field of view | ±40° × ±40° |
Sub-satellite resolution | 2.96 km (@407 km) |
Observation swath | 700 km (@407 km) |
Dynamic range | >1 |
Radiation measurement accuracy | >5% |
Polarization measurement accuracy | >0.02 (@P = 1) |
Number of angles | 14 |
SNR | ≥600@Solar constant |
Observation target | Cloud and Aerosol |
Channel | Spectral Band/nm | Bandwidth/nm | Wedge Prism | Polarization |
---|---|---|---|---|
1 | dark background | \ | no | no |
2 | 1030P1 | 30 | + | yes (+60°) |
3 | 1030P2 | 30 | no | yes (0°) |
4 | 1030P3 | 30 | - | yes (−60°) |
5 | 1370P1 | 50 | + | yes (+60°) |
6 | 1370P2 | 50 | no | yes (0°) |
7 | 1370P3 | 50 | - | yes (−60°) |
8 | 1640P1 | 50 | + | yes (+60°) |
9 | 1640P2 | 50 | no | yes (0°) |
10 | 1640P3 | 50 | - | yes (−60°) |
11 | 1030 | 30 | + | no |
12 | 1370 | 30 | no | no |
13 | 1640 | 50 | - | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhang, P.; Yin, D.; Li, Z.; Shang, H.; Xu, H.; Shang, J.; Gu, S.; Hu, X. Shortwave Infrared Multi-Angle Polarization Imager (MAPI) Onboard Fengyun-3 Precipitation Satellite for Enhanced Cloud Characterization. Remote Sens. 2022, 14, 4855. https://doi.org/10.3390/rs14194855
Wang H, Zhang P, Yin D, Li Z, Shang H, Xu H, Shang J, Gu S, Hu X. Shortwave Infrared Multi-Angle Polarization Imager (MAPI) Onboard Fengyun-3 Precipitation Satellite for Enhanced Cloud Characterization. Remote Sensing. 2022; 14(19):4855. https://doi.org/10.3390/rs14194855
Chicago/Turabian StyleWang, Haofei, Peng Zhang, Dekui Yin, Zhengqiang Li, Huazhe Shang, Hanlie Xu, Jian Shang, Songyan Gu, and Xiuqing Hu. 2022. "Shortwave Infrared Multi-Angle Polarization Imager (MAPI) Onboard Fengyun-3 Precipitation Satellite for Enhanced Cloud Characterization" Remote Sensing 14, no. 19: 4855. https://doi.org/10.3390/rs14194855