Targeting Plastics: Machine Learning Applied to Litter Detection in Aerial Multispectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Available Data
2.2. Classes of Interest and Training Data
- -
- The wood class is considered litter in our approach, i.e., processed wood, however wood items can have a purely natural origin (e.g., branches, dead trees fallen into rivers);
- -
- The difference between plastic and painted surfaces is only related to the origin of the training pixels: plastic pixels are extracted from plastic materials, while the painted surfaces correspond to areas such as cars, boats and reflectance tarps; however, most of the plastics can embed pigments to provide colors or can be superficially painted in practice, thus confusions between these two classes are tolerated as long as the pixels are correctly identified as plastic/painted litter;
- -
- Confusions between vegetation pixels (tree and grass) are largely tolerated and the algorithms were not tuned to obtain the best possible discrimination between these classes;
- -
- The natural materials could all be gathered in one single class as the corresponding pixels do not serve in monitoring litter pollution status nor they call for interventions (cleaning) in the area; however, it was preferred to make the distinction as it offers better insights on common class confusions between litter and non-litter materials.
2.3. Classification Algorithm
2.3.1. Overall Approach
2.3.2. Metrics Selection
2.3.3. Final Configuration
2.3.4. Validation Data
3. Results
3.1. Algorithm Performance
- -
- Precision (P): P = TP/(TP + FP)
- -
- Recall (R): R = TP/(TP + FN)
- -
- F1-score: F1-score = (2∙P∙R)/(P + R)
- -
- Accuracy: Accuracy = (TP + TN)/(TP + FN + TN + FP),
3.2. Validation Performance
4. Discussion
4.1. Influence of Shadows
4.2. Plastic Quantification and Representation
4.3. Sources of Classification Errors
4.3.1. Data Quality
4.3.2. Inter-Class Correlations
4.4. Influence of Spatial Resolution
4.5. A Note on Algorithm Transferability to Water Areas
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Full Set of Spectral Indices
Index Number | Index Name | Index Acronym | Index Formula | Reference Works |
---|---|---|---|---|
1–5 | MicaSense blue/green/red/red-edge/NIR band reflectance | B, G, R, RE, NIR | - | - |
6 | Adjusted transformed soil-adjusted vegetation index | ATSAVI | [58] | |
7 | Anthocyanin reflectance index | ARI | [59] | |
8 | Ashburn vegetation index | AVI | [60] | |
9 | Atmospherically resistant vegetation index | ARVI | [61] | |
10 | Atmospherically resistant vegetation index 2 | ARVI2 | [62] | |
11 | Blue-wide dynamic range vegetation index | BWDRVI | [63] | |
12 | Browning reflectance index | BRI | [64] | |
13 | Canopy chlorophyll content index | CCCI | [65] | |
14 | Chlorophyll absorption ratio index 2 | CARI2 | , where | [66] |
15 | Chlorophyll index green | CIgreen | [67] | |
16 | Chlorophyll index red-edge | CIrededge | [67] | |
17 | Chlorophyll vegetation index | CVI | [68] | |
18 | Coloration index | CI | [69] | |
19 | Normalized difference vegetation index | NDVI | [61] | |
20 | Corrected transformed vegetation index | CTVI | [70] | |
21 | Datt1 | Datt1 | [71] | |
22 | Datt4 | Datt4 | [71] | |
23 | Datt6 | Datt6 | [71] | |
24 | Differenced vegetation index MSS | DVIMSS | [72] | |
25 | Enhanced vegetation index | EVI | [68] | |
26 | Enhanced vegetation index 2 | EVI2 | [73] | |
27 | Enhanced vegetation index 2 -2 | EVI22 | [74] | |
28 | EPI | EPI | [75] | |
29 | Global environment monitoring index | GEMI | [76] | |
30 | Green leaf index | GLI | [68] | |
31 | Green normalized difference vegetation index | GNDVI | [75] | |
32 | Green optimized soil adjusted vegetation index | GOSAVI | [76] | |
33 | Green soil adjusted vegetation index | GSAVI | [76] | |
34 | Green-blue NDVI | GBNDVI | [77] | |
35 | Green-red NDVI | GRNDVI | [77] | |
36 | Hue | H | [78] | |
37 | Infrared percentage vegetation index | IPVI | [79] | |
38 | Intensity | I | [69] | |
30 | Inverse reflectance 550 | IR550 | [59] | |
40 | Inverse reflectance 717 | IR717 | C [59] | |
41 | Leaf Chlorophyll index | LCI | [71] | |
42 | Modified chlorophyll absorption in reflectance index | MCARI | [68] | |
43 | Misra green vegetation index | MGVI | [80] | |
44 | Misra non such index | MNSI | [80] | |
45 | Misra soil brightness index | MSBI | [80] | |
46 | Misra yellow vegetation index | MYVI | [80] | |
47 | Modified anthocyanin reflectance index | mARI | [81] | |
48 | Modified chlorophyll absorption in reflectance index 1 | MCARI1 | [82] | |
49 | Modified simple ratio NIR/red | MSRNIR_R | [83] | |
50 | Modified soil adjusted vegetation index | MSAVI | [82] | |
51 | Modified triangular vegetation index 1 | MTVI1 | [82] | |
52–54 | Normalized: Green, Red, NIR reflectance | NormT | C | |
55–60 | Normalized difference: Green-Red, NIR-B, NIR-Red, NIR-RE, R-G, RE-R | NT1T2DI | C [69] [75] | |
61 | Optimized soil adjusted vegetation index | OSAVI | [82] | |
62 | Pan NDVI | PNDVI | [77] | |
63 | Plant senescence reflectance index | PSRI | [84] | |
64 | RDVI | RDVI | [82] | |
65 | Red edge 2 | Rededge2 | [85] | |
66 | Red-blue NDVI | RBNDVI | [77] | |
67 | Saturation | S | [86] | |
68 | Shape index | IF | [69] | |
69 | Soil adjusted vegetation index | SAVI | [87] | |
70 | Soil and atmospherically resistant vegetation index 2 | SARVI2 | [88] | |
71 | Soil and atmospherically resistant vegetation index 3 | SARVI3 | [88] | |
72 | Spectral polygon vegetation index | SPVI | [89] | |
73 | Tasseled Cap—Green vegetation index MSS | GVIMSS | [90] | |
74 | Tasseled Cap—Non such index MSS | NSIMSS | [90] | |
75 | Tasseled Cap—Soil brightness index MSS | SBIMSS | [90] | |
76 | Tasseled Cap—Yellow vegetation index MSS | YVIMSS | [90] | |
77 | Ratio MCARI/OSAVI | MCARI_OSAVI | [90] | |
78 | Transformed chlorophyll absorption ratio | TCARI | [89] | |
79 | Triangular chlorophyll index | TCI | [68] | |
80 | Triangular vegetation index | TVI | [89] | |
81 | Wide dynamic range vegetation index | WDRVI | [83] | |
82 | Structure intensive pigment index | SIPI | [89] | |
83–92 | Ratio: B/G, B/R, B/RE, B/NIR, G/R, G/RE, G/NIR, R/RE, R/NIR, RE/NIR | rT1T2 | C | |
93–101 | Normalized ratio: B-G, B-R, B-RE, B-NIR, G-R, G-RE, G-NIR, R-NIR, RE-NIR | nT1T2 | C [91] [92] | |
102–111 | Difference: B-G, B-R, B-RE, B-NIR, G-R, G-RE, G-NIR, R-RE, R-NIR, RE-NIR | dT1T2 | C |
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; Urban Development Series; World Bank: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- DiGregorio, B.E. Biobased Performance Bioplastic: Mirel. Chem. Biol. 2009, 16, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Yee, M.S.-L.; Hii, L.-W.; Looi, C.K.; Lim, W.-M.; Wong, S.-F.; Kok, Y.-Y.; Tan, B.-K.; Wong, C.-Y.; Leong, C.-O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef]
- Martínez-Ibarra, A.; Martínez-Razo, L.D.; MacDonald-Ramos, K.; Morales-Pacheco, M.; Vázquez-Martínez, E.R.; López-López, M.; Rodríguez Dorantes, M.; Cerbón, M. Multisystemic alterations in humans induced by bisphenol A and phthalates: Experimental, epidemiological and clinical studies reveal the need to change health policies. Environ. Pollut. 2021, 271, 116380. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Bessa, F.; Ratcliffe, N.; Otero, V.; Sobral, P.; Marques, J.C.; Waluda, C.M.; Trathan, P.N.; Xavier, J.C. Microplastics in gentoo penguins from the Antarctic region. Sci. Rep. 2019, 9, 14191. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, A.J.; Brooks, L.S.R.; Reid, W.D.K.; Piertney, S.B.; Narayanaswamy, B.E.; Linley, T.D. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth. R. Soc. Open Sci. 2019, 6, 180667. [Google Scholar] [CrossRef] [Green Version]
- Napper, I.E.; Davies, B.F.R.; Clifford, H.; Elvin, S.; Koldewey, H.J.; Mayewski, P.A.; Miner, K.R.; Potocki, M.; Elmore, A.C.; Gajurel, A.P.; et al. Reaching new heights in plastic pollution—Preliminary findings of microplastics on Mount Everest. One Earth 2020, 3, 621–630. [Google Scholar] [CrossRef]
- Wilcox, C.; Puckridge, M.; Schuyler, Q.A.; Townsend, K.; Hardesty, B.D. A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Sci. Rep. 2018, 8, 12536. [Google Scholar] [CrossRef]
- Thiel, M.; Luna-Jorquera, G.; Ãlvarez-Varas, R.; Gallardo, C.; Hinojosa, I.A.; Luna, N.; Miranda-Urbina, D.; Morales, N.; Ory, N.; Pacheco, A.S.; et al. Impacts of Marine Plastic Pollution From Continental Coasts to Subtropical Gyres-Fish, Seabirds, and Other Vertebrates in the SE Pacific. Front. Mar. Sci. 2018, 5, 238. [Google Scholar] [CrossRef]
- Mbugani, J.J.; Machiwa, J.F.; Shilla, D.A.; Kimaro, W.; Joseph, D.; Khan, F.R. Histomorphological Damage in the Small Intestine of Wami Tilapia (Oreochromis urolepis) (Norman, 1922) Exposed to Microplastics Remain Long after Depuration. Microplastics 2022, 1, 240–253. [Google Scholar] [CrossRef]
- Ryan, P.G. Entanglement of birds in plastics and other synthetic materials. Mar. Pollut. Bull. 2018, 135, 159–164. [Google Scholar] [CrossRef]
- Blettler, M.C.M.; Mitchell, C. Dangerous traps: Macroplastic encounters affecting freshwater and terrestrial wildlife. Sci. Total Environ. 2021, 798, 149317. [Google Scholar] [CrossRef]
- Mederake, L.; Knoblauch, D. Shaping EU Plastic Policies: The Role of Public Health vs. Environmental Arguments. Int. J. Environ. Res. Public Health 2019, 16, 3928. [Google Scholar] [CrossRef] [Green Version]
- Prata, J.C.; Silva, A.L.P.; da Costa, J.P.; Mouneyrac, C.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. Solutions and Integrated Strategies for the Control and Mitigation of Plastic and Microplastic Pollution. Int. J. Environ. Res. Public Health 2019, 16, 2411. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Alhazmi, H.; Almansour, F.H.; Aldhafeeri, Z. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability 2021, 13, 5340. [Google Scholar] [CrossRef]
- Onyena, A.P.; Aniche, D.C.; Ogbolu, B.O.; Rakib, M.R.J.; Uddin, J.; Walker, T.R. Governance Strategies for Mitigating Microplastic Pollution in the Marine Environment: A Review. Microplastics 2022, 1, 15–46. [Google Scholar] [CrossRef]
- Bennett, E.M.; Alexandridis, P. Informing the Public and Educating Students on Plastic Recycling. Recycling 2021, 6, 69. [Google Scholar] [CrossRef]
- Diggle, A.; Walker, T.R. Environmental and Economic Impacts of Mismanaged Plastics and Measures for Mitigation. Environments 2022, 9, 15. [Google Scholar] [CrossRef]
- Herberz, T.; Barlow, C.Y.; Finkbeiner, M. Sustainability Assessment of a Single-Use Plastics Ban. Sustainability 2020, 12, 3746. [Google Scholar] [CrossRef]
- Hidaka, M.; Matsuoka, D.; Sugiyama, D.; Murakami, K.; Kako, S. Pixel-level image classification for detecting beach litter using a deep learning approach. Mar. Pollut. Bull. 2022, 175, 113371. [Google Scholar] [CrossRef]
- Martin, C.; Parkes, S.; Zhang, Q.; Zhang, X.; McCabe, M.F.; Duarte, C.M. Use of unmanned aerial vehicles for efficient beach litter monitoring. Mar. Pollut. Bull. 2020, 131, 662–673. [Google Scholar] [CrossRef] [Green Version]
- Fallati, L.; Polidori, A.; Salvatore, C.; Saponari, L.; Savini, A.; Galli, P. Anthropogenic marine debris assessment with unmanned aerial vehicle imagery and deep learning: A case study along the beaches of the Republic of Maldives. Sci. Total Environ. 2019, 693, 133581. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U. Operational use of multispectral images for macro-litter mapping and categorization by Unmanned Aerial Vehicle. Mar. Pollut. Bull. 2022, 176, 113431. [Google Scholar] [CrossRef]
- Kako, S.; Morita, S.; Taneda, T. Estimation of plastic marine debris volumes on beaches using unmanned aerial vehicles and image processing based on deep learning. Mar. Pollut. Bull. 2020, 155, 111127. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G.; Bessa, F.; Sobral, P. Mapping marine litter on coastal dunes with unmanned aerial systems: A showcase on the Atlantic Coast. Sci. Total Environ. 2020, 736, 139632. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Pinto, L.; Bessa, F. Mapping marine litter using UAS on a beach-dune system: A multidisciplinary approach. Sci. Total Environ. 2020, 706, 135742. [Google Scholar] [CrossRef]
- Andriolo, U.; Gonçalves, G.; Sobral, P.; Fontán-Bouzas, A.; Bessa, F. Beach-dune morphodynamics and marine macro-litter abundance: An integrated approach with Unmanned Aerial System. Sci. Total Environ. 2020, 749, 141474. [Google Scholar] [CrossRef]
- Gonçalves, G.; Andriolo, U.; Gonçalves, L.; Sobral, P.; Bessa, F. Quantifying Marine Macro Litter Abundance on a Sandy Beach Using Unmanned Aerial Systems and Object-Oriented Machine Learning Methods. Remote Sens. 2020, 12, 2599. [Google Scholar] [CrossRef]
- Jiménez-Lao, R.; Aguilar, F.J.; Nemmaoui, A.; Aguilar, M.A. Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research. Remote Sens. 2020, 12, 2649. [Google Scholar] [CrossRef]
- Feng, Q.; Niu, B.; Chen, B.; Ren, Y.; Zhu, D.; Yang, J.; Liu, J.; Ou, C.; Li, B. Mapping of plastic greenhouses and mulching films from very high resolution remote sensing imagery based on a dilated and non-local convolutional neural network. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102441. [Google Scholar] [CrossRef]
- Shi, L.; Huang, X.; Zhong, T.; Taubenböck, H. Mapping Plastic Greenhouses Using Spectral Metrics Derived From GaoFen-2 Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 49–59. [Google Scholar] [CrossRef]
- Balázs, J.; van Leeuwen, B.; Tobak, Z. Detection of Plastic Greenhouses Using High Resolution Rgb Remote Sensing Data and Convolutional Neural Network. J. Environ. Geogr. 2021, 14, 28–46. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Lin, R.; Zhang, Z.; Zhang, B. Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning. Remote Sens. 2021, 13, 2820. [Google Scholar] [CrossRef]
- Aguilar, M.Á.; Jiménez-Lao, R.; Nemmaoui, A.; Aguilar, F.J.; Koc-San, D.; Tarantino, E.; Chourak, M. Evaluation of the Consistency of Simultaneously Acquired Sentinel-2 and Landsat 8 Imagery on Plastic Covered Greenhouses. Remote Sens. 2020, 12, 2015. [Google Scholar] [CrossRef]
- European Space Agency. The Discovery Campaign on Remote Sensing of Plastic Marine Litter. Available online: https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/The_Discovery_Campaign_on_Remote_Sensing_of_Plastic_Marine_Litter (accessed on 10 June 2022).
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring Marine Plastic Debris from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef] [Green Version]
- Maximenko, N.; Corradi, P.; Law Kara, L.; Van Sebille, E.; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martinez-Vicente, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Toward the Integrated Marine Debris Observing System. Front. Mar. Sci. 2019, 6, 447. [Google Scholar] [CrossRef] [Green Version]
- Basu, B.; Sannigrahi, S.; Sarkar Basu, A.; Pilla, F. Development of Novel Classification Algorithms for Detection of Floating Plastic Debris in Coastal Waterbodies Using Multispectral Sentinel-2 Remote Sensing Imagery. Remote Sens. 2021, 13, 1598. [Google Scholar] [CrossRef]
- Themistocleous, K. Monitoring aquaculture fisheries using Sentinel-2 images by identifying plastic fishery rings. Earth Resour. Environ. Remote Sens. 2021, 118630, 248–254. [Google Scholar] [CrossRef]
- Maneja, R.H.; Thomas, R.; Miller, J.D.; Li, W.; El-Askary, H.; Flandez, A.V.B.; Alcaria, J.F.A.; Gopalan, J.; Jukhdar, A.; Basali, A.U.; et al. Marine Litter Survey at the Major Sea Turtle Nesting Islands in the Arabian Gulf Using In-Situ and Remote Sensing Methods. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 8582–8585. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Suaria, G.; Aliani, S. Floating marine litter detection algorithms and techniques using optical remote sensing data: A review. Mar. Pollut. Bull. 2021, 170, 112675. [Google Scholar] [CrossRef]
- Arias, M.; Sumerot, R.; Delaney, J.; Coulibaly, F.; Cozar, A.; Aliani, S.; Suaria, G.; Papadopoulou, T.; Corradi, P. Advances on remote sensing of windrows as proxies for maline litter based on Sentinel-2/MSI datasets. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1126–1129. [Google Scholar] [CrossRef]
- Biermann, L.; Clewley, D.; Martinez-Vicente, V.; Topouzelis, K. Finding Plastic Patches in Coastal Waters using Optical Satellite Data. Sci. Rep. 2020, 10, 5364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasseron, P.; van Emmerik, T.; Peller, J.; Schreyers, L.; Biermann, L. Advancing Floating Macroplastic Detection from Space Using Experimental Hyperspectral Imagery. Remote Sens. 2021, 13, 2335. [Google Scholar] [CrossRef]
- Ciappa, A.C. Marine plastic litter detection offshore Hawai’i by Sentinel-2. Mar. Pollut. Bull. 2021, 168, 112457. [Google Scholar] [CrossRef] [PubMed]
- Hu, C. Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: Challenges and potentials. Remote Sens. Environ. 2021, 259, 112414. [Google Scholar] [CrossRef]
- Topouzelis, K.; Papageorgiou, D.; Karagaitanakis, A.; Papakonstantinou, A.; Arias Ballesteros, M. Remote Sensing of Sea Surface Artificial Floating Plastic Targets with Sentinel-2 and Unmanned Aerial Systems (Plastic Litter Project 2019). Remote Sens. 2020, 12, 2013. [Google Scholar] [CrossRef]
- Themistocleous, K.; Papoutsa, C.; Michaelides, S.; Hadjimitsis, D. Investigating Detection of Floating Plastic Litter from Space Using Sentinel-2 Imagery. Remote Sens. 2020, 12, 2648. [Google Scholar] [CrossRef]
- Lu, L.; Tao, Y.; Di, L. Object-Based Plastic-Mulched Landcover Extraction Using Integrated Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1820. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Scikit-Learn Documentation. Available online: https://scikit-learn.org/stable/modules/ensemble.html#random-forest-parameters (accessed on 16 June 2022).
- Iordache, M.-D.; Bioucas-Dias, J.M.; Plaza, A. Sparse Unmixing of Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2014–2039. [Google Scholar] [CrossRef] [Green Version]
- Iordache, M.-D. A Sparse Regression Approach to Hyperspectral Unmixing. Ph.D. Thesis, Instituto Superior Técnico, Lisboa, Portugal, 2011. [Google Scholar]
- Knaeps, E.; Sterckx, S.; Strackx, G.; Mijnendonckx, J.; Moshtaghi, M.; Garaba, S.P.; Meire, D. Hyperspectral-reflectance dataset of dry, wet and submerged marine litter. Earth Syst. Sci. Data 2021, 13, 713–730. [Google Scholar] [CrossRef]
- He, Y.; Guo, X.; Wilmshurst, J. Comparison of different methods for measuring leaf area index in a mixed grassland. Can. J. Plant Sci. 2007, 87, 803–813. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Zur, Y.; Stark, R.; Gritz, U. Non-destructive and remote sensing techniques for estimation of vegetation status. In Proceedings of the Third European Conference on Precision Agriculture, Montpellier, France, 18–20 June 2001; Volume 1, pp. 301–306. [Google Scholar]
- Ashburn, P.M. The vegetative index number and crop identification. In Proceedings of the Technical Session, Houston, TX, USA, 29 March 1985; pp. 843–856. [Google Scholar]
- Gitelson, A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Hancock, D.W.; Dougherty, C.T. Relationships between Blue- and Red-based Vegetation Indices and Leaf Area and Yield of Alfalfa. Crop Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Solovchenko, A.E.; Pogosyan, S.I. Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigments. Russ. J. Plant Physiol. 2003, 50, 704–710. [Google Scholar] [CrossRef]
- El-Shikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Haberland, J.A.; Pinter Jr, P.J.; Waller, P.M.; Thompson, T.L. Remote sensing of cotton nitrogen status using the Canopy Chlorophyll Content Index (CCCI). Trans. ASABE 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Kim, M.S. The Use of Narrow Spectral Bands for Improving Remote Sensing Estimation of Fractionally Absorbed Photosynthetically Active Radiation. Master’s Thesis, University of Maryland, College Park, MD, USA, 1994. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Escadafal, R.; Belghit, A.; Ben-Moussa, A. Indices spectraux pour la télédétection de la dégradation des milieux naturels en Tunisie aride. In Proceedings of the Actes du 6eme Symposium International sur les Mesures Physiques et Signatures en Télédétection, Val d’Isère, France, 17–24 January 1994; ISPRS: Sophia Antipolis, France, 1994; pp. 253–259. Available online: https://goobi.tib.eu/viewer/image/830289488/8/ (accessed on 16 June 2022). (In French).
- Perry, C.R.; Lautenschlager, L.F. Functional equivalence of spectral vegetation indices. Remote Sens. Environ. 1984, 14, 169–182. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Water Content in Eucalyptus Leaves. Aust. J. Bot. 1999, 47, 909–923. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Miura, T.; Yoshioka, H.; Fujiwara, K.; Yamamoto, H. Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring. Sensors 2008, 8, 2480–2499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Chlorophyll a, Chlorophyll b, Chlorophyll a+b, and Total Carotenoid Content in Eucalyptus Leaves. Remote Sens. Environ. 1998, 66, 111–121. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Wang, F.M.; Huang, J.F.; Tang, Y.L.; Wang, X.Z. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, L.; Leuven, R.S.E.W.; Wehrens, R.; Nienhuis, P.H.; Buydens, L.M.C. A comparison of methods to relate grass reflectance to soil metal contamination. Int. J. Remote Sens. 2003, 24, 4995–5010. [Google Scholar] [CrossRef]
- Misra, P.N.; Wheeler, S.G.; Oliver, R.E. Kauth-Thomas brightness and greenness axes. Contract NASA 1977, 9-14350, 23–46. [Google Scholar]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Cloutis, E.A.; Connery, D.R.; Major, D.J.; Dover, F.J. Airborne multi-spectral monitoring of agricultural crop status: Effect of time of year, crop type and crop condition parameter. Int. J. Remote Sens. 1996, 17, 2579–2601. [Google Scholar] [CrossRef]
- Duveiller, G.; Weiss, M.; Baret, F.; Defourny, P. Retrieving wheat Green Area Index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sens. Environ. 2011, 115, 887–896. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Main, R.; Cho, M.A.; Mathieu, R.; O’Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Kauth, R.J.; Thomas, G.S. The Tasselled Cap—A Graphic Description of the Spectral-Temporal Development of Agricultural Crops as Seen by LANDSAT. LARS Symp. 1976, 159, 41–51. [Google Scholar]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
Class | Grass | Soil | Tree | Water | Cement | Painted | Oxidated | Plastic | Wood |
---|---|---|---|---|---|---|---|---|---|
Number of validation points | 254,543 | 66,351 | 431,151 | 238,269 | 7559 | 6575 | 17,373 | 399,545 | 9543 |
Precision | Recall | F1-Score | Support | |
---|---|---|---|---|
Grass | 0.93 | 0.88 | 0.91 | 1074 |
Soil | 0.91 | 0.95 | 0.93 | 1281 |
Tree | 0.91 | 0.95 | 0.93 | 1244 |
Water | 1.00 | 1.00 | 1.00 | 1109 |
Cement | 0.88 | 0.88 | 0.88 | 153 |
Painted surface | 0.90 | 0.88 | 0.89 | 528 |
Oxidated metal | 0.91 | 0.95 | 0.93 | 215 |
Plastic | 0.94 | 0.90 | 0.92 | 1363 |
Wood | 0.86 | 0.87 | 0.86 | 690 |
Accuracy | 0.93 | 7657 |
Threshold | None (Ground-Truth Map) | None (Raw Map) | T = 0.05 | T = 0.1 | T = 0.15 | T = 0.2 | |
---|---|---|---|---|---|---|---|
Quantification of plastics | Pixels | 147,009 | 275,464 | 196,400 | 178,580 | 172,292 | 153,482 |
Area [m2] | 3.387 | 6.346 | 4.525 | 4.114 | 3.969 | 3.536 |
Grass | Soil | Tree | Water | Cement | Painted Surface | Oxidated Metal | Plastic | Wood | ||
---|---|---|---|---|---|---|---|---|---|---|
Grass | min (C) | - | 0.605 | 0.520 | <0.001 | 0.094 | <0.001 | <0.001 | <0.001 | <0.001 |
max (C) | - | >0.999 | 1 | 0.953 | >0.999 | >0.999 | 0.994 | >0.999 | >0.999 | |
mean (C) | - | 0.890 | 0.985 | 0.381 | 0.756 | 0.633 | 0.766 | 0.705 | 0.911 | |
Soil | min (C) | 0.605 | - | 0.460 | <0.001 | 0.265 | <0.001 | 0.044 | <0.001 | <0.001 |
max (C) | >0.999 | - | >0.999 | 0.933 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | |
mean (C) | 0.890 | - | 0.862 | 0.430 | 0.908 | 0.618 | 0.877 | 0.637 | 0.939 | |
Tree | min (C) | 0.520 | 0.460 | - | <0.001 | 0.074 | <0.001 | <0.001 | <0.001 | 0.012 |
max (C) | 1 | >0.999 | - | 0.983 | 0.986 | >0.999 | 0.997 | >0.999 | >0.999 | |
mean (C) | 0.985 | 0.862 | - | 0.368 | 0.709 | 0.634 | 0.742 | 0.713 | 0.888 | |
Water | min (C) | <0.001 | <0.001 | <0.001 | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
max (C) | 0.953 | 0.933 | 0.983 | - | 0.937 | >0.999 | 0.969 | >0.999 | >0.999 | |
mean (C) | 0.381 | 0.430 | 0.368 | - | 0.381 | 0.388 | 0.327 | 0.432 | 0.449 | |
Cement | min (C) | 0.094 | 0.265 | 0.074 | <0.001 | - | <0.001 | 0.103 | <0.001 | <0.001 |
max (C) | >0.999 | >0.999 | 0.986 | 0.937 | - | >0.999 | >0.999 | >0.999 | >0.999 | |
mean (C) | 0.756 | 0.908 | 0.709 | 0.381 | - | 0.585 | 0.844 | 0.545 | 0.861 | |
Painted surface | min (C) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | - | <0.001 | <0.001 | <0.001 |
max (C) | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | - | >0.999 | >0.999 | >0.999 | |
mean (C) | 0.633 | 0.618 | 0.634 | 0.388 | 0.585 | - | 0.571 | 0.571 | 0.618 | |
Oxidated metal | min (C) | <0.001 | 0.044 | <0.001 | <0.001 | 0.103 | <0.001 | - | <0.001 | <0.001 |
max (C) | 0.994 | 0.999 | 0.997 | 0.969 | >0.999 | >0.999 | - | 0.998 | >0.999 | |
mean (C) | 0.766 | 0.877 | 0.742 | 0.327 | 0.844 | 0.571 | - | 0.554 | 0.824 | |
Plastic | min (C) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | - | <0.001 |
max (C) | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | 0.998 | - | >0.999 | |
mean (C) | 0.705 | 0.637 | 0.713 | 0.432 | 0.545 | 0.571 | 0.554 | - | 0.656 | |
Wood | min (C) | <0.001 | <0.001 | 0.012 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | - |
max (C) | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | >0.999 | - | |
mean (C) | 0.911 | 0.939 | 0.888 | 0.449 | 0.861 | 0.618 | 0.824 | 0.656 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iordache, M.-D.; De Keukelaere, L.; Moelans, R.; Landuyt, L.; Moshtaghi, M.; Corradi, P.; Knaeps, E. Targeting Plastics: Machine Learning Applied to Litter Detection in Aerial Multispectral Images. Remote Sens. 2022, 14, 5820. https://doi.org/10.3390/rs14225820
Iordache M-D, De Keukelaere L, Moelans R, Landuyt L, Moshtaghi M, Corradi P, Knaeps E. Targeting Plastics: Machine Learning Applied to Litter Detection in Aerial Multispectral Images. Remote Sensing. 2022; 14(22):5820. https://doi.org/10.3390/rs14225820
Chicago/Turabian StyleIordache, Marian-Daniel, Liesbeth De Keukelaere, Robrecht Moelans, Lisa Landuyt, Mehrdad Moshtaghi, Paolo Corradi, and Els Knaeps. 2022. "Targeting Plastics: Machine Learning Applied to Litter Detection in Aerial Multispectral Images" Remote Sensing 14, no. 22: 5820. https://doi.org/10.3390/rs14225820