Integrating Spatial Heterogeneity to Identify the Urban Fringe Area Based on NPP/VIIRS Nighttime Light Data and Dual Spatial Clustering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Mutation Point Detection by SCWT
2.2.1. Selection of Wavelet Basic Function
2.2.2. Determination of Spatial Scale in SCWT
2.2.3. Elimination of “Pseudo” Mutation Point
2.3. Urban Fringes Identification by Dual Spatial Clustering
2.3.1. Construction of Spatial Proximity Relationships
2.3.2. Clustering Mutation Points with Attribute Similarity
Neighbor Entropy Computation for Each Mutation Point
Calculating Similarity from the Cluster Center Mutation Point
Producing Various Clusters
Implementation Procedure of the Algorithm
- ①
- Establish the DT for the mentioned mutation points.
- ②
- Eliminate the edges from the DT based on the global edge-length constraint.
- ③
- Eliminate the edges from the DT according to local edge-length constraints.
- ①
- Choose the highest neighbor entropy as .
- ②
- Utilize the BFS to visit both direct and indirect neighborhoods of in the inclining order of their corresponding neighbor entropy. The cluster is constructed when they meet Equation (11), and no new mutation point is appended to the cluster, thereby detecting them as clustered.
- ③
- Traverse all mutation points that are not clustered by iterative operations ①–②. When clustering is finished, any mutation point that does not belong to a cluster will be identified as noise.
2.4. Boundary Derivation of the Mutation Point Set
3. Results
3.1. Mutation Point Detection
3.2. Urban Fringe Identification
4. Discussion
4.1. The Influence of Using the Strategy of Eliminating “Pseudo” Mutation Points
4.2. Comparison of Identified Regions Using Different Dual Spatial Clustering
4.3. Comparison of Identified Regions Using Different VIIRS Nighttime Light Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciais, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision; United Nations 717 Department of Economic and Social Affairs: New York, NY, USA, 2018. [Google Scholar]
- Pryor, R.J. Defining the rural-urban fringe. Soc. Forces. 1968, 47, 202–215. [Google Scholar] [CrossRef]
- Vizzari, M.; Sigura, M. Landscape sequences along the urban-rural-natural gradient: A novel geospatial approach for identification and analysis. Landsc. Urban. Plan. 2015, 140, 42–55. [Google Scholar] [CrossRef]
- Smith, T.L. The Population of Louisiana: Its Composition and Changes; Louisiana State University and Agricultural and Mechanical College, Agricultural Experiment Station: Baton Rouge, LA, USA, 1937; p. 261. [Google Scholar]
- Bryant, C.; Charvet, J.P. The peri-urban zone: The structure and dynamics of a strategic component of metropolitan regions. Can. J. Reg. Sci. 2003, 26, 231–239. [Google Scholar]
- Antrop, M. Landscape change and the urbanization process in Europe. Landsc. Urban. Plan. 2004, 67, 9–26. [Google Scholar] [CrossRef]
- Sharp, J.S.; Clark, J.K. Between the country and the concrete: Rediscovering the rural-urban fringe. City Community 2008, 7, 61–79. [Google Scholar] [CrossRef]
- Cao, G.; Liu, T.; Liu, H.; Miao, Y. Changing spatial and structural patterns of non–agricultural activities in outward–moving Beijing urban–rural fringe. Chin. Geogr. Sci. 2012, 22, 718–729. [Google Scholar] [CrossRef]
- Masek, J.G.; Lindsay, F.E.; Goward, S.N. Dynamics of urban growth in the Washington DC metropolitan area, 1973–1996, from Landsat observations. Int. J. Remote Sens. 2000, 21, 3473–3486. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Feng, Z.; Fang, Y. Methods on defining the urban fringe area of Beijing. In Proceedings of the International Symposium on Digital Earth International Society for Optics and Photonics, Beijing, China, 3 November 2010; Volume 7840. [Google Scholar]
- Chen, B. Review on identification method and driving mechanism of Peri-urban Area. Prog. Geogr. 2012, 31, 210–220. [Google Scholar]
- Zhang, W.; Fang, X.; Zhang, L. Method to identify the urban-rural fringe by TM images. J. Remote Sens. 1999, 3, 199–202. (In Chinese) [Google Scholar]
- Qian, J.; Zhou, Y.; Yang, X. Confirmation of urban fringe area based on remote sensing and message entropy:a case study of Jingzhou, Hubei Province. Resour. Environ. 2007, 16, 451–455. (In Chinese) [Google Scholar]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the urban–rural fringe using wavelet transform and kernel density estimation: A case study in beijing city, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.; Liu, Y.; Ma, J.; Zhao, S. A new approach for urban–rural fringe identification: Integrating impervious surface area and spatial continuous wavelet transform. Landsc. Urban. Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Dong, Q.; Qu, S.; Qin, J.; Yi, D.; Liu, Y.; Zhang, J. A Method to Identify Urban Fringe Area Based on the Industry Density of POI. ISPRS Int. J. Geo-Inf. 2022, 11, 128. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, Z.; Wang, Y.; Liu, J.; Li, S.; Zhu, Y. Clustering urban multifunctional landscapes using the self–organizing feature map neural network model. J. Urban. Plan. Dev. 2014, 140, 11. [Google Scholar] [CrossRef]
- Zhao, F.A.; Jian, P.B.; Jwa, B. Using DMSP/OLS nighttime light data and K–means method to identify urban–rural fringe of megacities. Habitat. Int. 2020, 103, 102227. [Google Scholar]
- Goodchild, M.F. The validity and usefulness of laws in geographic information science and geography. Ann. Assoc. Am. Geographers. 2004, 94, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zheng, J.; Di, S.; Wang, S.; Yang, J. A dual spatial clustering method in the presence of heterogeneity and noise. Transactions 2020, 24, 1799–1826. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Stutzer, D.C.; Elvidge, C.D. A technique for using composite DMSP/OLS “city lights” satellite data to map urban area. Remote Sens. Environ. 1997, 61, 361–370. [Google Scholar] [CrossRef]
- Rom´an, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Masuoka, E.J. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
- Li, X.; Zhao, L.; Li, D.; Xu, H. Mapping urban extent using Luojia 1–01 nighttime light imagery. Sensors 2018, 18, 3665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Guo, W.; Lu, D.; Wu, Y.; Zhang, J. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data. Remote Sens. 2015, 7, 12459–12477. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, X.; Asrar, G.R.; Smith, S.J.; Imhoff, M. A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 2018, 219, 206–220. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Tackett, J.L.; Giles, D.M.; Kar, J.; Liu, Z.; Vaughan, M.A.; Powell, K.A.; Trepte, C.R. CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res. Atmos. 2013, 118, 4748–4766. [Google Scholar] [CrossRef]
- Román, M.O.; Stokes, E.C. Holidays in lights: Tracking cultural patterns in demand for energy services. Earth’s Futur. 2015, 3, 182–205. [Google Scholar] [CrossRef]
- Gao, C.; Feng, Y.; Tong, X.; Lei, Z.K.; Chen, S.R.; Zhai, S.T. Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and GWR. Comput. Enviro. Urban. 2020, 81, 101459. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Tan, C.; Li, W. Spatial Recognition of the Urban-Rural Fringe of Beijing Using DMSP/OLS Nighttime Light Data. Remote Sens. 2017, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Jia, X.; Pickering, M. Urban-Rural Fringe Recognition with the Integration of Optical and Nighttime Lights Data. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July 2019–2 August 2019. [Google Scholar]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric cities. Remote Sens. Enviro. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Fagan, W.F.; Fortin, M.J.; Soykan, C. Integrating edge detection and dynamic modeling in quantitative analyses of ecological boundaries. BioScience 2003, 53, 730–738. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Dong, J.; Sun, Y.; Zhu, J.; Huang, Y.; Yang, S. A constraint-based approach for identifying the urban–rural fringe of polycentric cities using multi-sourced data. Int. J. Geogr. Sci. 2021, 36, 114–136. [Google Scholar] [CrossRef]
- Mallet, S. A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Yu, W.; Ai, T.; Shao, S. The analysis and delimitation of Central Business District using network kernel density estimation. J. Transp. Geogr. 2015, 45, 32–47. [Google Scholar] [CrossRef]
- Liu, Q.L.; Deng, M.; Shi, Y.; Wang, J.Q. A density-based spatial clustering algorithm considering both spatial proximity and attribute similarity. Comput. Geosci. 2012, 46, 296–309. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Y.; Li, J. Spatial clustering method considering spatial distribution feature in the attribute domain. J. Remote Sens. 2017, 21, 917–927. [Google Scholar]
- Zhu, J.; Sun, Y.Z.; Chen, L.Y.; Zhou, W.; Meng, Y.W. A Spatial Clustering Method Based on Uneven Distribution of Non-spatial Attributes-Identifying City Commercial Center. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 1696–1702. [Google Scholar]
- Li, Z.L.; Huang, P.Z. Quantitative measures for spatial information of maps. Int. J. Geogr. Inf. Sci. 2002, 16, 699–709. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Pakhira, M.K.; Bandyopadhyay, S.; Maulik, U. Validity index for crisp and fuzzy clusters. Pattern Recognit. 2004, 37, 487–501. [Google Scholar] [CrossRef]
- Peethambaran, J.; Muthuganapathy, R. A non-parametric approach to shape reconstruction from planar point sets through Delaunay filtering. Comput. Aided Des. 2015, 62, 164–175. [Google Scholar] [CrossRef]
- Lin, C.R.; Liu, K.H.; Chen, M.-S. Dual clustering: Integrating data clustering over optimization and constraint domains. IEEE. T Knowl. Data. Eng. 2005, 17, 628–637. [Google Scholar]
- Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. Clustering validity checking methods: Part II. ACM Sigmod Rec. 2002, 31, 19–27. [Google Scholar] [CrossRef]
- Zhu, C.; Li, X.; Ru, Y. Assessment of Socioeconomic Dynamics and Electrification Progress in Tanzania Using VIIRS Nighttime Light Images. Remote Sens. 2022, 14, 4240. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Zhou, Y.; Dong, B. Impact of temporal compositing on nighttime light data and its applications. Remote Sens. Environ. 2022, 274, 113016. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Z.; Wang, Z.; Román, M.O.; Kalb, V.L.; Zhao, Y. Continuous monitoring of nighttime light changes based on daily NASA’s Black Marble product suite. Remote Sens. Environ. 2022, 282, 113269. [Google Scholar] [CrossRef]
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | |
Number | 195 | 15 | 20 | 55 | 15 | 12 | 10 | 20 | 13 | 9 | 8 |
Mean value | 69.2 | 36.7 | 50.2 | 63.2 | 78.3 | 45.6 | 68.5 | 43.3 | 15.6 | 36.7 | 6.9 |
Standard deviation | 15.4 | 7.3 | 8.6 | 12.9 | 8.4 | 7.3 | 6.6 | 8.9 | 6.4 | 6.2 | 7.8 |
C13 | C14 | C16 | C17 | C18 | C22 | C23 | C25 | C28 | C29 | C32 | |
Number | 8 | 8 | 7 | 12 | 6 | 8 | 8 | 11 | 7 | 6 | 5 |
Mean value | 43.5 | 26.5 | 36.5 | 53.1 | 69.2 | 52.1 | 70.1 | 40.2 | 18.1 | 39.3 | 10.9 |
Standard deviation | 7.6 | 6.5 | 6.3 | 7.2 | 7.6 | 6.5 | 7.1 | 6.8 | 6.9 | 5.2 | 4.8 |
Our Method | DBSC | Mk-Means | |
---|---|---|---|
Number of clusters | 22 | 45 | 10 |
Number of noises | 15 | 42 | 0 |
Urban fringe segment | 9 | 12 | 7 |
SD of mean values of clusters | 20.56 | 34.15 | 11.39 |
Our Method | DBSC | Mk-Means | |
---|---|---|---|
NFL of urban fringe | 17.46 | 15.13 | 8.65 |
RS index | 0.73 | 0.53 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Lang, Z.; Yang, J.; Wang, M.; Zheng, J.; Na, J. Integrating Spatial Heterogeneity to Identify the Urban Fringe Area Based on NPP/VIIRS Nighttime Light Data and Dual Spatial Clustering. Remote Sens. 2022, 14, 6126. https://doi.org/10.3390/rs14236126
Zhu J, Lang Z, Yang J, Wang M, Zheng J, Na J. Integrating Spatial Heterogeneity to Identify the Urban Fringe Area Based on NPP/VIIRS Nighttime Light Data and Dual Spatial Clustering. Remote Sensing. 2022; 14(23):6126. https://doi.org/10.3390/rs14236126
Chicago/Turabian StyleZhu, Jie, Ziqi Lang, Jing Yang, Meihui Wang, Jiazhu Zheng, and Jiaming Na. 2022. "Integrating Spatial Heterogeneity to Identify the Urban Fringe Area Based on NPP/VIIRS Nighttime Light Data and Dual Spatial Clustering" Remote Sensing 14, no. 23: 6126. https://doi.org/10.3390/rs14236126