The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data and In Situ Data
2.2. The Atmospheric Correction Scheme of COCTS on HY-1C/1D
2.3. The Evaluation Method
3. Results
3.1. Validation by MOBY Measurements
3.2. The Comparison of the Daily Rrs(λ) Image
3.3. The Comparison of 8-Day Composite Products
4. Discussion
4.1. The Removal of the Sun Glint Contamination
4.2. The 3-Day Composite Images
4.3. The Spectral Variations over the Ocean Dynamic Features
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, Z.; Chen, P.; Tao, B.; Ding, J.; Liu, J.; Chen, J.; Hao, Z.; Zhu, Q.; Huang, H. A Radiometric Calibration Scheme for COCTS/HY-1C Based on Image Simulation from the Standard Remote-Sensing Reflectance. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–9. [Google Scholar] [CrossRef]
- HY-1C/D-EoPortal Directory-Satellite Missions. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/hy-1c-1d (accessed on 1 January 2021).
- Cai, L.; Zhou, M.; Liu, J.; Tang, D.; Zuo, J. HY-1C Observations of the Impacts of Islands on Suspended Sediment Distribution in Zhoushan Coastal Waters, China. Remote Sens. 2020, 12, 1766. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Zhang, J.; Tong, C.; Liu, R.-J.; Mu, B.; Ding, J. Retrieval Algorithm of Chlorophyll-a Concentration in Turbid Waters from Satellite HY-1C Coastal Zone Imager Data. J. Coast. Res. 2019, 90, 146–155. [Google Scholar] [CrossRef]
- Mao, Z.; Tao, B.; Chen, J.; Chen, P.; Hao, Z.; Zhu, Q.; Huang, H. A Layer Removal Scheme for Atmospheric Correction of Satellite Ocean Color Data in Coastal Regions. IEEE Trans. Geo. Remote Sens. 2021, 59, 1382–1391. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A Multi-Spectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Lee, Z.; Garcia, R.; Zoffoli, L.; Armstrong, R.A.; Shang, Z.; Sheldon, P.; Chen, R.F. An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sens. Environ. 2018, 215, 18–32. [Google Scholar] [CrossRef]
- Ilori, C.; Pahlevan, N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 2019, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef]
- Oo, M.; Vargas, M.; Gilerson, A.; Gross, B.; Moshary, F.; Ahmed, S. Improving Atmospheric Correction for Highly Productive Coastal Waters Using the Short Wave Infrared Retrieval Algorithm with Water-Leaving Reflectance Constraints at 412 Nm. Appl. Opt. 2008, 47, 3846–3859. [Google Scholar] [CrossRef]
- Mao, Z.; Pan, D.; He, X.; Chen, J.; Tao, B.; Chen, P.; Hao, Z.; Bai, Y.; Zhu, Q.; Huang, H. A Unified Algorithm for the Atmospheric Correction of Satellite Remote Sensing Data over Land and Ocean. Remote Sens. 2016, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Jiang, L. Atmospheric Correction Using the Information from the Short Blue Band. IEEE Trans. Geo. Remote Sens. 2018, 56, 6224–6237. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, M. Improved Near-Infrared Ocean Reflectance Correction Algorithm for Satellite Ocean Color Data Processing. Opt. Express 2014, 22, 21657–21678. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Shanmugam, P.; He, X.; Schroeder, T. UV-NIR Approach with Non-Zero Water-Leaving Radiance Approximation for Atmospheric Correction of Satellite Imagery in Inland and Coastal Zones. Opt. Express 2019, 27, A1118–A1145. [Google Scholar] [CrossRef]
- Zhang, M.; Hu, C.; Barnes, B.B. Performance of POLYMER Atmospheric Correction of Ocean Color Imagery in the Presence of Absorbing Aerosols. IEEE Trans. Geo. Remote Sens. 2019, 57, 6666–6674. [Google Scholar] [CrossRef]
- Mao, Z.; Tao, B.; Chen, P.; Chen, J.; Hao, Z.; Zhu, Q.; Huang, H. Atmospheric Correction of Satellite Ocean Color Remote Sensing in the Presence of High Aerosol Loads. Remote Sens. 2019, 12, 31. [Google Scholar] [CrossRef] [Green Version]
- Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of Four Atmospheric Correction Algorithms for MODIS-Aqua Images over Contrasted Coastal Waters. Remote Sens. Environ. 2013, 131, 63–75. [Google Scholar] [CrossRef]
- Carswell, T.; Costa, M.; Young, E.; Komick, N.; Gower, J.; Sweeting, R. Evaluation of MODIS-Aqua Atmospheric Correction and Chlorophyll Products of Western North American Coastal Waters Based on 13 Years of Data. Remote Sens. 2017, 9, 1063. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR Atmospheric Correction Algorithms Using SeaBASS Data. Remote Sens. Environ. 2009, 113, 635–644. [Google Scholar] [CrossRef]
- Wang, M.; Wei, S. Estimation of Ocean Contribution at the MODIS Near-Infrared Wavelengths along the East Coast of the U.S.: Two Case Studies. Geo. Res. Lett. 2005, 32, L13606. [Google Scholar] [CrossRef]
- Mao, Z.; Mao, Z.; Jamet, C.; Linderman, M.; Wang, Y.; Chen, X. Seasonal Cycles of Phytoplankton Expressed by Sine Equations Using the Daily Climatology from Satellite-Retrieved Chlorophyll-a Concentration (1997–2019) Over Global Ocean. Remote Sens. 2020, 12, 2662. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. Filling the Gaps of Missing Data in the Merged VIIRS SNPP/NOAA-20 Ocean Color Product Using the DINEOF Method. Remote Sens. 2019, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, Z.; Qiao, Y.; Liu, Y.; Zhang, Y. A New Method for Cross-Calibration of Two Satellite Sensors. Int. J. Remote Sens. 2004, 25, 5267–5281. [Google Scholar] [CrossRef]
- Chander, G.; Xiong, X.; Choi, T.; Angal, A. Monitoring On-Orbit Calibration Stability of the Terra MODIS and Landsat 7 ETM+ Sensors Using Pseudo-Invariant Test Sites. Remote Sens. Environ. 2010, 114, 925–939. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Holz, R.E.; Lee, J.; Quinn, G.; Veglio, P. Cross-Calibration of S-NPP VIIRS Moderate-Resolution Reflective Solar Bands against MODIS Aqua over Dark Water Scenes. Atmos. Meas. Tech. 2017, 10, 1425–1444. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; He, X.; Liu, Z.; Xu, N.; Ma, L.; Xing, Q.; Hu, X.; Pan, D. An Approach to Cross-Calibrating Multi-Mission Satellite Data for the Open Ocean. Remote Sens. Environ. 2020, 246, 111895. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Detection of Turbid Waters and Absorbing Aerosols for the MODIS Ocean Color Data Processing. Remote Sens. Environ. 2007, 110, 149–161. [Google Scholar] [CrossRef]
- Brown, S.W.; Flora, S.J.; Feinholz, M.E.; Yarbrough, M.A.; Houlihan, T.; Peters, D.; Kim, Y.S.; Mueller, J.L.; Johnson, B.C.; Clark, D.K. The Marine Optical Buoy (MOBY) Radiometric Calibration and Uncertainty Budget for Ocean Color Satellite Sensor Vicarious Calibration. In Sensors, Systems, and Next-Generation Satellites XI; Habib, S., Meynart, R., Neeck, S.P., Shimoda, H., Eds.; SPIE: Bellingham, WA, USA, 2007; Volume 6744, pp. 433–444. [Google Scholar]
- Lacis, A.A.; Hansen, J.E. A Parameterization for the Absorption of Solar Radiation in the Earth’s Atmosphere. J. Atmos. Sci. 1974, 31, 118–133. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J., Jr. Validation of a Vector Version of the 6S Radiative Transfer Code for Atmospheric Correction of Satellite Data Part I: Path Radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F. Validation of a Vector Version of the 6S Radiative Transfer Code for Atmospheric Correction of Satellite Data Part II Homogeneous Lambertian and Anisotropic Surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, H.R.; Wang, M. Surface-Roughness Considerations for Atmospheric Correction of Ocean Color Sensors. I: The Rayleigh-Scattering Component. Appl. Opt. 1992, 31, 4247–4260. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.; Munk, W. Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter. J. Opt. Soc. Am. 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Frouin, R.; Schwindling, M.; Deschamps, P.-Y. Spectral Reflectance of Sea Foam in the Visible and Near-Infrared: In Situ Measurements and Remote Sensing Implications. J. Geophy. Res. Oceans 1996, 101, 14361–14371. [Google Scholar] [CrossRef]
- Moulin, C.; Gordon, H.R.; Banzon, V.F.; Evans, R.H. Assessment of Saharan Dust Absorption in the Visible from SeaWiFS Imagery. J. Geophy. Res. Atmos. 2001, 106, 18239–18249. [Google Scholar] [CrossRef]
- Jena, B.; Swain, D.; Avinash, K. Investigation of the biophysical processes over the oligotrophic waters of South Indian Ocean subtropical gyre, triggered by cyclone Edzani. Int. J. Appl. Earth Obs. Geo. 2012, 18, 49–56. [Google Scholar] [CrossRef]
Ocean Color Sensor | Band | Central Wavelength (nm) | Range (nm) | Bandwidth (nm) | Signal-to-Noise Ratio |
---|---|---|---|---|---|
COCTS | 1 | 412 | 402~422 | 20 | 349 |
MODIS | 8 | 412 | 405~420 | 15 | 880 |
COCTS | 2 | 443 | 433~453 | 20 | 472 |
MODIS | 9 | 443 | 438~448 | 10 | 838 |
COCTS | 3 | 490 | 480~500 | 20 | 467 |
MODIS | 10 | 488 | 483~493 | 10 | 802 |
COCTS | 4 | 520 | 510~530 | 20 | 448 |
MODIS | 11 | 531 | 526~536 | 10 | 754 |
COCTS | 5 | 565 | 555~575 | 20 | 417 |
MODIS | 12 | 551 | 546~556 | 10 | 750 |
COCTS | 6 | 670 | 660~680 | 20 | 309 |
MODIS | 13 | 667 | 662~672 | 10 | 910 |
COCTS | 7 | 750 | 730~770 | 40 | 319 |
MODIS | 15 | 748 | 743~753 | 10 | 586 |
COCTS | 8 | 865 | 845~885 | 40 | 327 |
MODIS | 16 | 869 | 862~877 | 15 | 516 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
Mean Rm (sr−1) | 0.01117 | 0.00882 | 0.00538 | 0.00242 | 0.00106 | 0.00012 | 0.00483 |
Mean Rsat (sr−1) | 0.01112 | 0.00844 | 0.00526 | 0.00233 | 0.00099 | 0.00011 | 0.00471 |
MRE (%) | 2.34 | −2.31 | −0.29 | −0.88 | −3.09 | −5.15 | −1.56 |
MAE (%) | 16.37 | 14.73 | 14.11 | 15.97 | 17.85 | 24.81 | 17.31 |
MPD (%) | −1.49 | 3.05 | 0.94 | 2.11 | 8.93 | 230.43 | 40.66 |
MAD (%) | 13.95 | 13.09 | 11.97 | 14.54 | 22.29 | 230.43 | 51.05 |
RMS (sr−1) | 0.00227 | 0.0017 | 0.001 | 0.0005 | 0.0002 | 3.93 × 10−5 | 0.00095 |
R2 | 0.34 | 0.27 | 0.20 | 0.19 | 0.38 | 0.83 | 0.37 |
Number of pairs | 455 | 457 | 452 | 434 | 368 | 99 | 377 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
Mean Rm (sr−1) | 0.0111 | 0.0086 | 0.0054 | 0.0024 | 0.00107 | 0.0001 | 0.00478 |
Mean Rsat (sr−1) | 0.0112 | 0.0083 | 0.0051 | 0.0023 | 0.00103 | 0.0001 | 0.00467 |
MRE (%) | 2.25 | −2.55 | −3.58 | −2.16 | −0.25 | 12.61 | 1.05 |
MAE (%) | 11.59 | 11.32 | 10.34 | 13.46 | 15.45 | 31.94 | 15.68 |
MPD (%) | −1.98 | 2.79 | 2.09 | −0.72 | 5.91 | 129.71 | 22.97 |
MAD (%) | 10.66 | 10.16 | 9.53 | 11.42 | 15.77 | 129.71 | 31.21 |
RMS (sr−1) | 0.00183 | 0.00151 | 0.00078 | 0.00046 | 0.00019 | 3.51 × 10−5 | 0.0008 |
R2 | 0.21 | 0.17 | 0.17 | 0.11 | 0.31 | 0.33 | 0.22 |
Number of pairs | 36 | 36 | 35 | 35 | 31 | 9 | 30 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
MRE (%) | 3.35 | 8.87 | 13.12 | 13.02 | 13.84 | 13.42 | 10.94 |
MAE (%) | 18.48 | 19.01 | 19.97 | 22.01 | 24.09 | 24.73 | 21.38 |
MPD (%) | 9.29 | 10.82 | 6.52 | 8.77 | 6.89 | 62.71 | 17.5 |
MAD (%) | 16.39 | 16.11 | 13.76 | 16.56 | 30.68 | 93.09 | 31.09 |
RMS (sr−1) | 0.0062 | 0.0051 | 0.0038 | 0.0028 | 0.0018 | 0.0015 | 0.0035 |
R2 | 0.90 | 0.86 | 0.78 | 0.66 | 0.88 | 0.93 | 0.83 |
Number of pairs | 57,849 | 59,424 | 64,876 | 54,144 | 27,302 | 8409 | 45,334 |
Wavebands | 1 | 2 | 3 | 4 | 5 | 6 | Mean |
---|---|---|---|---|---|---|---|
MRE (%) | 11.07 | 13.37 | 12.92 | 14.74 | 14.31 | 13.46 | 13.31 |
MAE (%) | 19.45 | 20.56 | 19.98 | 21.69 | 23.7 | 23.36 | 21.45 |
MPD (%) | 14.01 | 9.35 | −0.54 | 0.81 | 4.17 | −15.14 | 2.11 |
MAD (%) | 20.92 | 17.86 | 13.45 | 14.81 | 25.82 | 61.93 | 25.79 |
RMS (sr−1) | 0.0069 | 0.0056 | 0.0039 | 0.0028 | 0.0018 | 0.0015 | 0.0037 |
R2 | 0.91 | 0.87 | 0.81 | 0.71 | 0.89 | 0.94 | 0.85 |
Number of pairs | 48,672 | 56,006 | 67,008 | 58,694 | 35,059 | 12,076 | 46,253 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Z.; Zhang, Y.; Tao, B.; Chen, J.; Hao, Z.; Zhu, Q.; Huang, H. The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites. Remote Sens. 2022, 14, 6372. https://doi.org/10.3390/rs14246372
Mao Z, Zhang Y, Tao B, Chen J, Hao Z, Zhu Q, Huang H. The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites. Remote Sensing. 2022; 14(24):6372. https://doi.org/10.3390/rs14246372
Chicago/Turabian StyleMao, Zhihua, Yiwei Zhang, Bangyi Tao, Jianyu Chen, Zengzhou Hao, Qiankun Zhu, and Haiqing Huang. 2022. "The Atmospheric Correction of COCTS on the HY-1C and HY-1D Satellites" Remote Sensing 14, no. 24: 6372. https://doi.org/10.3390/rs14246372