GRACE Satellite-Based Analysis of Spatiotemporal Evolution and Driving Factors of Groundwater Storage in the Black Soil Region of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Uncertainty Analysis
2.2.2. GRACE Monthly Gravity Field Model Data
2.2.3. GLDAS Hydrological Model Data
2.2.4. Groundwater Monitoring Well Data
2.2.5. Meteorological Data
2.2.6. Other Data
2.2.7. Calculation and Verification of GWSA
2.2.8. Theil–Sen Median Trend Analysis and Mann–Kendall Test
3. Results
3.1. Uncertainty Analysis on TWSA, SMA, and SWEA Variations
3.2. Validation of the Inversion Results
3.3. Variations in the Spatial Characteristics of GWSA
3.4. Variations in the Temporal Characteristics of GWSA
4. Discussion
4.1. Factors Influencing the GWSA
4.2. Comparison of Related Studies and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, K.; Li, X.; Long, X. Trends in groundwater changes driven by precipitation and anthropogenic activities on the southeast side of the hu line. Environ. Res. Lett. 2021, 16, 094032. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Zhang, X.; Chen, Z. Spatiotemporal changes in china’s terrestrial water storage from grace satellites and its possible drivers. J. Geophys Res.-Atmos 2019, 124, 11976–11993. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, H.; Chen, B.; Zhang, Q.; Li, Z. Long-term and seasonal variation in groundwater storage in the north china plain based on grace. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102560. [Google Scholar] [CrossRef]
- Akbari, M.; Shalamzari, M.J.; Memarian, H.; Gholami, A. Monitoring desertification processes using ecological indicators and providing management programs in arid regions of iran. Ecol. Indic. 2020, 111, 106011. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, C.; Ma, R. Safe and sustainable groundwater supply in china. Hydrogeol. J. 2018, 26, 1301–1324. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.-S. The impact of groundwater depth on the spatial variance of vegetation index in the ordos plateau, china: A semivariogram analysis. J. Hydrol. 2020, 588, 125096. [Google Scholar] [CrossRef]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in india. Nature 2009, 460, 999–1002. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Van Beek, L.P.; Van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef] [Green Version]
- de Graaf, I.E.; Gleeson, T.; Sutanudjaja, E.H.; Bierkens, M.F. Environmental flow limits to global groundwater pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef]
- Noori, R.; Maghrebi, M.; Mirchi, A.; Tang, Q.; Bhattarai, R.; Sadegh, M.; Noury, M.; Torabi Haghighi, A.; Kløve, B.; Madani, K. Anthropogenic depletion of iran’s aquifers. Proc. Natl. Acad. Sci. USA 2021, 118, e2024221118. [Google Scholar] [CrossRef]
- Jin, S.; Feng, G. Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Glob. Planet. Chang. 2013, 106, 20–30. [Google Scholar] [CrossRef]
- Yang, Y.; Watanabe, M.; Zhang, X.; Zhang, J.; Wang, Q.; Hayashi, S. Optimizing irrigation management for wheat to reduce groundwater depletion in the piedmont region of the taihang mountains in the north china plain. Agric. Water Manag. 2006, 82, 25–44. [Google Scholar] [CrossRef]
- Feng, T.; Shen, Y.; Chen, Q.; Wang, F.; Zhang, X. Groundwater storage change and driving factor analysis in north china using independent component decomposition. J. Hydrol. 2022, 609, 127708. [Google Scholar] [CrossRef]
- Jia, X.; O’Connor, D.; Hou, D.; Jin, Y.; Li, G.; Zheng, C.; Ok, Y.S.; Tsang, D.C.; Luo, J. Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in china. Sci. Total Environ. 2019, 672, 551–562. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, W.; Zhu, H.; Yin, W.; Xu, A.; Pan, F.; Wang, Q.; Zhao, Y. Inverted algorithm of groundwater storage anomalies by combining the gnss, grace/grace-fo, and gldas: A case study in the north china plain. Remote Sens. 2022, 14, 5683. [Google Scholar] [CrossRef]
- Fatolazadeh, F.; Goïta, K. Reconstructing groundwater storage variations from grace observations using a new gaussian-han-fan (ghf) smoothing approach. J. Hydrol. 2022, 604, 127234. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Zhang, Y. Calibration—free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res. 2021, 57, e2021WR029691. [Google Scholar] [CrossRef]
- Akhtar, F.; Nawaz, R.A.; Hafeez, M.; Awan, U.K.; Borgemeister, C.; Tischbein, B. Evaluation of grace derived groundwater storage changes in different agro-ecological zones of the indus basin. J. Hydrol. 2022, 605, 127369. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; De Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the middle east from grace with implications for transboundary water management in the tigris—euphrates—western iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, C.; Brutsaert, W. Mutual consistency of groundwater storage changes derived from grace and from baseflow recessions in the central yangtze river basin. J. Geophys Res.-Atmos. 2020, 125, e2019JD031467. [Google Scholar] [CrossRef]
- Joodaki, G.; Wahr, J.; Swenson, S. Estimating the human contribution to groundwater depletion in the middle east, from grace data, land surface models, and well observations. Water Resour. Res. 2014, 50, 2679–2692. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Zhang, Z.; Ni, S. Long-term groundwater variations in northwest india from satellite gravity measurements. Glob. Planet. Chang. 2014, 116, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Bhanja, S.N.; Mukherjee, A.; Saha, D.; Velicogna, I.; Famiglietti, J.S. Validation of grace based groundwater storage anomaly using in-situ groundwater level measurements in india. J. Hydrol. 2016, 543, 729–738. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y. Increasing tibetan plateau terrestrial evapotranspiration primarily driven by precipitation. Agric. For. Meteorol. 2022, 317, 108887. [Google Scholar]
- Pokhrel, Y.N.; Fan, Y.; Miguez-Macho, G.; Yeh, P.J.F.; Han, S.-C. The role of groundwater in the amazon water cycle: 3. Influence on terrestrial water storage computations and comparison with grace. J. Geophys Res.-Atmos. 2013, 118, 3233–3244. [Google Scholar] [CrossRef]
- Choi, S.; Oh, C.-W.; Luehr, H. Tectonic relation between northeastern china and the korean peninsula revealed by interpretation of grace satellite gravity data. Gondwana Res. 2006, 9, 62–67. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Q.; Rao, W.; Sun, W. Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in mainland china. Earth Planet. Phys. 2022, 6, 94–107. [Google Scholar] [CrossRef]
- Sarkar, T.; Kannaujiya, S.; Taloor, A.K.; Champati Ray, P.K.; Chauhan, P. Integrated study of grace data derived interannual groundwater storage variability over water stressed indian regions. Groundw. Sustain. Dev. 2020, 10, 100376. [Google Scholar] [CrossRef]
- Su, Y.; Guo, B.; Zhou, Z.; Zhong, Y.; Min, L. Spatio-temporal variations in groundwater revealed by grace and its driving factors in the huang-huai-hai plain, china. Sensors 2020, 20, 922. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Zhang, H. Groundwater drought characteristics and its influencing factors with corresponding quantitative contribution over the two largest catchments in china. J. Hydrol. 2022, 609, 127759. [Google Scholar] [CrossRef]
- Liu, X.; Hu, L.; Sun, K.; Yang, Z.; Sun, J.; Yin, W. Improved understanding of groundwater storage changes under the influence of river basin governance in northwestern china using grace data. Remote Sens. 2021, 13, 2672. [Google Scholar] [CrossRef]
- Yin, W.; Hu, L.; Zhang, M.; Wang, J.; Han, S.-C. Statistical downscaling of grace-derived groundwater storage using et data in the north china plain. J. Geophys Res.-Atmos. 2018, 123, 5973–5987. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, M.; Feng, W.; Zhang, Z.; Shen, Y.; Wu, D. Groundwater depletion in the west liaohe river basin, china and its implications revealed by grace and in situ measurements. Remote Sens. 2018, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. Grace measurements of mass variability in the earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Hsu, H.; Zhong, M.; Yun, M. Requirements analysis for future satellite gravity mission improved-grace. Surv. Geophys. 2015, 36, 87–109. [Google Scholar] [CrossRef]
- Rzepecka, Z.; Birylo, M. Groundwater storage changes derived from grace and gldas on smaller river basins—A case study in poland. Geosciences 2020, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the earth’s gravity field: Hydrological and oceanic effects and their possible detection using grace. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern india, from satellite gravity observations. Geophys. Res. Lett. 2009, 36, L18401. [Google Scholar] [CrossRef] [Green Version]
- Asoka, A.; Mishra, V. A strong linkage between seasonal crop growth and groundwater storage variability in india. J. Hydrometeorol. 2021, 22, 125–138. [Google Scholar] [CrossRef]
- Saha, A.; Pal, S.C.; Chowdhuri, I.; Roy, P.; Chakrabortty, R. Effect of hydrogeochemical behavior on groundwater resources in holocene aquifers of moribund ganges delta, india: Infusing data-driven algorithms. Environ. Pollut. 2022, 314, 120203. [Google Scholar] [CrossRef]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating groundwater storage changes in the mississippi river basin (USA) using grace. Hydrogeol. J. 2007, 15, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Yeh, P.J.F.; Swenson, S.C.; Famiglietti, J.S.; Rodell, M. Remote sensing of groundwater storage changes in illinois using the gravity recovery and climate experiment (grace). Water Resour. Res. 2006, 42, W12203. [Google Scholar] [CrossRef]
- Swenson, S.; Yeh, P.J.F.; Wahr, J.; Famiglietti, J. A comparison of terrestrial water storage variations from grace with in situ measurements from illinois. Geophys. Res. Lett. 2006, 33, L16401. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.; Fisher, J.B. Challenges and opportunities in grace-based groundwater storage assessment and management: An example from yemen. Water Resour. Manag. 2012, 26, 1425–1453. [Google Scholar] [CrossRef]
- Li, T.; Xia, J.; Zhang, L.; She, D.; Wang, G.; Cheng, L. An improved complementary relationship for estimating evapotranspiration attributed to climate change and revegetation in the loess plateau, china. J. Hydrol. 2021, 592, 125516. [Google Scholar] [CrossRef]
- Tangdamrongsub, N.; Han, S.-C.; Tian, S.; Müller Schmied, H.; Sutanudjaja, E.H.; Ran, J.; Feng, W. Evaluation of groundwater storage variations estimated from grace data assimilation and state-of-the-art land surface models in australia and the north china plain. Remote Sens. 2018, 10, 483. [Google Scholar] [CrossRef] [Green Version]
- Moiwo, J.P.; Lu, W.; Tao, F. Grace, gldas and measured groundwater data products show water storage loss in western jilin, china. Water Sci. Technol. 2012, 65, 1606–1614. [Google Scholar] [CrossRef]
- Tao, Z.; Tao, T.; Ding, X.; He, R. Groundwater storage changes in anhui province derived from grace and gldas hydrological model. Prog. Geophys. 2021, 4, 1456–1463. (In Chinese) [Google Scholar]
- Ali, S.; Wang, Q.; Liu, D.; Fu, Q.; Mafuzur Rahaman, M.; Abrar Faiz, M.; Jehanzeb Masud Cheema, M. Estimation of spatio-temporal groundwater storage variations in the lower transboundary indus basin using grace satellite. J. Hydrol. 2022, 605, 127315. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.D.C.; Yakubu, C.I.; Heck, B. Uncertainties of the gravity recovery and climate experiment time-variable gravity-field solutions based on three-cornered hat method. J. Appl. Remote Sens. 2016, 10, 015015. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, J.; Wang, Y.; Zhou, D.; Zhu, Q. Investigation about the correlation and propagation among meteorological, agricultural and groundwater droughts over humid and arid/semi-arid basins in china. J. Hydrol. 2021, 603, 127007. [Google Scholar] [CrossRef]
- Zhong, Y.; Feng, W.; Zhong, M.; Ming, Z. Dataset of Reconstructed Terrestrial Water Storage in China Based on Precipitation (2002–2019). Available online: https://data.tpdc.ac.cn/en/data/71cf70ec-0858-499d-b7f2-63319e1087fc/ (accessed on 12 October 2022).
- Katpatal, Y.B.; Rishma, C.; Singh, C.K. Sensitivity of the gravity recovery and climate experiment (grace) to the complexity of aquifer systems for monitoring of groundwater. Hydrogeol. J. 2018, 26, 933–943. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in north china using the gravity recovery and climate experiment (grace) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Huang, Z.; Pan, Y.; Gong, H.; Yeh, P.J.F.; Li, X.; Zhou, D.; Zhao, W. Subregional—scale groundwater depletion detected by grace for both shallow and deep aquifers in north china plain. Geophys. Res. Lett. 2015, 42, 1791–1799. [Google Scholar] [CrossRef]
- Liu, B. Water Storage Monitoring in Three Northeastern Provinces Based on Grace Satellites during 2002–2017; Jilin University: Changchun, China, 2021. (In Chinese) [Google Scholar]
- Chen, H.; Zhang, W.; Nie, N.; Guo, Y. Long-term groundwater storage variations estimated in the songhua river basin by using grace products, land surface models, and in-situ observations. Sci. Total Environ. 2019, 649, 372–387. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, J.; Li, H. Drought and flood monitoring of the liao river basin in northeast china using extended grace data. Remote Sens. 2018, 10, 1168. [Google Scholar] [CrossRef] [Green Version]
- Qian, A.; Yi, S.; Chang, L.; Sun, G.; Liu, X. Using grace data to study the impact of snow and rainfall on terrestrial water storage in northeast china. Remote Sens. 2020, 12, 4166. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, X.; Gao, H. Local-scale groundwater sustainability assessment based on the response to groundwater mining (mgsi): A case study of da’an city, jilin province, china. Sustainability 2022, 14, 5618. [Google Scholar] [CrossRef]
SMA | SWEA | TWSA | |
---|---|---|---|
SWEA | 0.08 | ||
TWSA | 0.76 | 0.15 | |
GWSA | −0.7 | −0.35 | −0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Cui, G.; Li, X.; Liu, Y.; Li, X.; Tong, S.; Zhang, M. GRACE Satellite-Based Analysis of Spatiotemporal Evolution and Driving Factors of Groundwater Storage in the Black Soil Region of Northeast China. Remote Sens. 2023, 15, 704. https://doi.org/10.3390/rs15030704
Wang S, Cui G, Li X, Liu Y, Li X, Tong S, Zhang M. GRACE Satellite-Based Analysis of Spatiotemporal Evolution and Driving Factors of Groundwater Storage in the Black Soil Region of Northeast China. Remote Sensing. 2023; 15(3):704. https://doi.org/10.3390/rs15030704
Chicago/Turabian StyleWang, Shan, Geng Cui, Xiaojie Li, Yan Liu, Xiaofeng Li, Shouzheng Tong, and Mingye Zhang. 2023. "GRACE Satellite-Based Analysis of Spatiotemporal Evolution and Driving Factors of Groundwater Storage in the Black Soil Region of Northeast China" Remote Sensing 15, no. 3: 704. https://doi.org/10.3390/rs15030704