Relationship between Crustal Deformation and Thermal Anomalies in the 2022 Ninglang Ms 5.5 Earthquake in China: Clues from InSAR and RST
Abstract
:1. Introduction
2. Geological and Tectonic Background
3. Data and Methods
3.1. SAR Data and InSAR Processing
3.2. MODIS LST Data and RST Analysis
4. Results
4.1. Coseismic Deformation
4.2. Seismic Displacement Field
4.3. Seismic Thermal Anomalies
5. Discussion
5.1. Characterization of Seismogenic Fault and Focal Mechanism Solutions
5.2. Thermal Anomalies and Earthquakes
5.3. Relationship between Crustal Deformation and Thermal Anomalies
5.4. Methodological Challenges
6. Conclusions
- (1).
- According to the crustal deformation, the seismic coseismic deformation mainly exhibits a subsidence-based deformation pattern, and the seismogenic faults are dominated by positive fault dip-slip motion. The seismic displacement field indicates that the cumulative deformation in the region is mainly caused by multiple small and medium-sized earthquakes in the epicenter, and the pre-seismic trend is stable and creeping displacement. Meanwhile, multiple earthquakes after the earthquake of Ms 5.5 on 2 January 2022 continued to generate deformation in the epicenter. Based on the solution of the source mechanism, it is considered that the NW-trending strike-slip-cum-positive rupture Yongning Fault is the seismogenic rupture of this earthquake.
- (2).
- From the thermal anomalies before and after the earthquake, the relative deviation threshold RETIRA ≥ 3 was selected, and 23 anomalies were extracted from June 2021 to June 2022. The seismic fault system composed of NE- and NW-oriented faults is an important factor in the formation of thermal anomalies, which are accompanied by changes in stress at different stages before and after the earthquake.
- (3).
- The active fracture activity in the zone produces deformation accompanied by changes in thermal radiation. Temporally, as the rupture activity intensifies, the thermal anomalies gradually expand outward from the rupture around the epicenter and become stronger as the deformation is generated. Spatially, the thermal anomalies are surrounded by the larger deformation zone, and the frequency of thermal anomalies in the area of obvious deformation in the epicenter is positively correlated with the deformation variation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, Q.; Kang, C.; Shen, X.; Jing, F.; Qu, C. Seismic Infrared Remote Sensing, 2nd ed.; Seismological Press: Beijing, China, 2017; pp. 171–184. [Google Scholar]
- Zhang, P.; Deng, Q.; Zhang, G.; Ma, J.; Gan, W.; Min, W.; Mao, F.; Wang, Q. Strong Seismic Activity and Active Land Masses in Mainland China. Sci. China Ser. D-Earth Sci. 2003, 33, 12–20. (In Chinese) [Google Scholar] [CrossRef]
- Clark, M.R. Finding Active Faults Using Aerial Photographs. Earthq. Inf. Bull. (USGS) 1978, 10, 169–173. [Google Scholar]
- Tronin, A. Satellite Remote Sensing in Seismology. A Review. Remote Sens. 2009, 2, 124–150. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.A.; Gloaguen, R. Appraisal of Active Tectonics in Hindu Kush: Insights from DEM Derived Geomorphic Indices and Drainage Analysis. Geosci. Front. 2012, 3, 407–428. [Google Scholar] [CrossRef]
- Gao, M.; Zeilinger, G.; Xu, X.; Wang, Q.; Hao, M. DEM and GIS Analysis of Geomorphic Indices for Evaluating Recent Uplift of the Northeastern Margin of the Tibetan Plateau, China. Geomorphology 2013, 190, 61–72. [Google Scholar] [CrossRef]
- Radaideh, O.M.A.; Mosar, J. Tectonics Controls on Fluvial Landscapes and Drainage Development in the Westernmost Part of Switzerland: Insights from DEM-Derived Geomorphic Indices. Tectonophysics 2019, 768, 228179. [Google Scholar] [CrossRef] [Green Version]
- Papanikolaou, I.; Dafnis, P.; Deligiannakis, G.; Hengesh, J.; Panagopoulos, A. Active Faults, Paleoseismological Trenching and Seismic Hazard Assessment in the Northern Mygdonia Basin, Northern Greece: The Assiros-Krithia Fault and the Drimos Fault Zone. Quat. Int. 2022. [Google Scholar] [CrossRef]
- Wright, T.; Parsons, B.; Fielding, E. Measurement of Interseismic Strain Accumulation across the North Anatolian Fault by Satellite Radar Interferometry. Geophys. Res. Lett. 2001, 28, 2117–2120. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.; England, P.C.; Fielding, E.J. InSAR Observations of Low Slip Rates on the Major Faults of Western Tibet. Science 2004, 305, 236–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.; Peltzer, G. Current Slip Rates on Conjugate Strike-Slip Faults in Central Tibet Using Synthetic Aperture Radar Interferometry: Strike-slip sar rates, central tibet. J. Geophys. Res. 2006, 111, B12402. [Google Scholar] [CrossRef] [Green Version]
- Biggs, J.; Wright, T.; Lu, Z.; Parsons, B. Multi-Interferogram Method for Measuring Interseismic Deformation: Denali Fault, Alaska. Geophys. J. Int. 2007, 170, 1165–1179. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wright, T.J. Satellite Geodetic Imaging Reveals Internal Deformation of Western Tibet: Internal deformation of western tibet. Geophys. Res. Lett. 2012, 39, L07303. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Ji, L.; Zhu, L.; Zhao, C. InSAR-Constrained Interseismic Deformation and Potential Seismogenic Asperities on the Altyn Tagh Fault at 91.5–95° E, Northern Tibetan Plateau. Remote Sens. 2018, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Elliott, J.R.; Craig, T.J.; Hooper, A.; Wright, T.J. Improving the Resolving Power of InSAR for Earthquakes Using Time Series: A Case Study in Iran. Geophys. Res. Lett. 2021, 48, e2021GL093043. [Google Scholar] [CrossRef]
- Qiang, Z.; Xu, X.; Lin, C. Satellite Thermal Infrared Anomaly—Precursor of Imminent Earthquake. Chin. Sci. Bull. 1990, 35, 1324–1327. (In Chinese) [Google Scholar]
- Tramutoli, V.; Aliano, C.; Corrado, R.; Filizzola, C.; Genzano, N.; Lisi, M.; Martinelli, G.; Pergola, N. On the Possible Origin of Thermal Infrared Radiation (TIR) Anomalies in Earthquake-Prone Areas Observed Using Robust Satellite Techniques (RST). Chem. Geol. 2013, 339, 157–168. [Google Scholar] [CrossRef]
- Jing, F.; Shen, X.H.; Kang, C.L.; Xiong, P. Variations of Multi-Parameter Observations in Atmosphere Related to Earthquake. Nat. Hazards Earth Syst. Sci. 2013, 13, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, A.; Singh, S.; Sam, L.; Joshi, P.K.; Bhardwaj, A.; Martín-Torres, F.J.; Kumar, R. A Review on Remotely Sensed Land Surface Temperature Anomaly as an Earthquake Precursor. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 158–166. [Google Scholar] [CrossRef]
- Wu, L.; Qin, K.; Liu, S. Progress in Analysis to Remote Sensed Thermal Abnormity with Fault Activity and Seismogenic Process. Acta Geod. Et Cartogr. Sin. 2017, 46, 1470–1481. (In Chinese) [Google Scholar]
- Peleli, S.; Kouli, M.; Vallianatos, F. Satellite-Observed Thermal Anomalies and Deformation Patterns Associated to the 2021, Central Crete Seismic Sequence. Remote Sens. 2022, 14, 3413. [Google Scholar] [CrossRef]
- Tributsch, H. Do Aerosol Anomalies Precede Earthquakes? Nature 1978, 276, 606–608. [Google Scholar] [CrossRef]
- Tronin, A.A. Atmosphere-Lithosphere Coupling. Thermal Anomalies on the Earth Surface in Seismic Processes. In Seismo. Electromagnetics: Lithosphere-Atmosphere -Ionosphere Coupling; Hayakawa, M., Molchanov, O.A., Eds.; TERRAPUB: Tokyo, Japan, 2002; pp. 173–176. [Google Scholar]
- Okada, Y.; Mukai, S.; Singh, R.P. Changes in Atmospheric Aerosol Parameters after Gujarat Earthquake of 26 January 2001. Adv. Space Res. 2004, 33, 254–258. [Google Scholar] [CrossRef]
- Dey, S.; Sarkar, S.; Singh, R.P. Anomalous Changes in Column Water Vapor after Gujarat Earthquake. Adv. Space Res. 2004, 33, 274–278. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Jiang, G.; Wen, Y.; Liu, Y.; Xu, X.; Fang, L.; Chen, G.; Gong, M.; Xu, C. Joint Analysis of the 2014 Kangding, Southwest China, Earthquake Sequence with Seismicity Relocation and InSAR Inversion: The 2014 kangding earthquake sequence. Geophys. Res. Lett. 2015, 42, 3273–3281. [Google Scholar] [CrossRef]
- Wang, H.; Liu-Zeng, J.; Ng, A.H.-M.; Ge, L.; Javed, F.; Long, F.; Aoudia, A.; Feng, J.; Shao, Z. Sentinel-1 Observations of the 2016 Menyuan Earthquake: A Buried Reverse Event Linked to the Left-Lateral Haiyuan Fault. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 14–21. [Google Scholar] [CrossRef]
- Zhao, D.; Qu, C.; Shan, X.; Bürgmann, R.; Gong, W.; Zhang, G. Spatiotemporal Evolution of Postseismic Deformation Following the 2001 Mw7.8 Kokoxili, China, Earthquake from 7 Years of Insar Observations. Remote Sens. 2018, 10, 1988. [Google Scholar] [CrossRef] [Green Version]
- Hamling, I.J.; Upton, P. Observations of Aseismic Slip Driven by Fluid Pressure Following the 2016 Kaikōura, New Zealand, Earthquake. Geophys. Res. Lett. 2018, 45, 11030–11039. [Google Scholar] [CrossRef]
- Zheng, A.; Yu, X.; Xu, W.; Chen, X.; Zhang, W. A Hybrid Source Mechanism of the 2017 Mw 6.5 Jiuzhaigou Earthquake Revealed by the Joint Inversion of Strong-Motion, Teleseismic and InSAR Data. Tectonophysics 2020, 789, 228538. [Google Scholar] [CrossRef]
- Tong, X.; Xu, X.; Chen, S. Coseismic Slip Model of the 2021 Maduo Earthquake, China from Sentinel-1 InSAR Observation. Remote Sens. 2022, 14, 436. [Google Scholar] [CrossRef]
- He, Y.; Wang, T.; Fang, L.; Zhao, L. The 2020 Mw 6.0 Jiashi Earthquake: Coinvolvement of Thin-Skinned Thrusting and Basement Shortening in Shaping the Keping-Tage Fold-and-Thrust Belt in Southwestern Tian Shan. Seismol. Res. Lett. 2022, 93, 680–692. [Google Scholar] [CrossRef]
- Ji, L.; Zhu, L.; Liu, C.; Zhang, W.; Qiu, J.; Xu, X. Review on InSAR-Derived Coseismic Deformation and the Determination of Earthquake Source Parameters. J. Earth Sci. Environ. 2021, 43, 604–620. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ding, X.; Chen, H.; Zhang, W. SAR Monitoring of Nowaday Deformation in the Eastern Segment of the Altyn Tagh Fault. Earth Sci. Front. 2008, 15, 370–375. (In Chinese) [Google Scholar]
- Elliott, J.R.; Biggs, J.; Parsons, B.; Wright, T.J. InSAR Slip Rate Determination on the Altyn Tagh Fault, Northern Tibet, in the Presence of Topographically Correlated Atmospheric Delays: Altyn tagh fault slip rate. Geophys. Res. Lett. 2008, 35, L12309. [Google Scholar] [CrossRef] [Green Version]
- Daout, S.; Doin, M.-P.; Peltzer, G.; Lasserre, C.; Socquet, A.; Volat, M.; Sudhaus, H. Strain Partitioning and Present-Day Fault Kinematics in NW Tibet From Envisat SAR Interferometry. J. Geophys. Res. Solid Earth 2018, 123, 2462–2483. [Google Scholar] [CrossRef]
- Cavalié, O.; Lasserre, C.; Doin, M.-P.; Peltzer, G.; Sun, J.; Xu, X.; Shen, Z.-K. Measurement of Interseismic Strain across the Haiyuan Fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett. 2008, 275, 246–257. [Google Scholar] [CrossRef]
- Xu, X.; Qu, C.; Shan, X.; Ma, C.; Zhang, G.; Meng, X. An Experimental Study of Monitoring Fault Crustal Deformation Using PS-InSAR Technology. Adv. Earth Sci. 2012, 27, 452–459. (In Chinese) [Google Scholar]
- Huang, Z.; Zhou, Y.; Qiao, X.; Zhang, P.; Cheng, X. Kinematics of the ∼1000 Km Haiyuan Fault System in Northeastern Tibet from High-Resolution Sentinel-1 InSAR Velocities: Fault Architecture, Slip Rates, and Partitioning. Earth Planet. Sci. Lett. 2022, 583, 117450. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Biggs, J. Interseismic Slip Rate of the Northwestern Xianshuihe Fault from InSAR Data: Interseismic slip rate of xsh fault. Geophys. Res. Lett. 2009, 36, L03302. [Google Scholar] [CrossRef]
- Walters, R.J.; Holley, R.J.; Parsons, B.; Wright, T.J. Interseismic Strain Accumulation across the North Anatolian Fault from Envisat InSAR Measurements: Naf interseismic strain from insar. Geophys. Res. Lett. 2011, 38, L05303. [Google Scholar] [CrossRef] [Green Version]
- Gornyy, V.; Sal’man, A.G.; Tronin, A.; Shilin, B.V. The Earth’s Outgoing IR Radiation as an Indicator of Seismic activity. Proc. Acad. Sci USSR 1988, 301, 67–69. [Google Scholar]
- Tramutoli, V. Robust AVHRR Techniques (RAT) for Environmental Monitoring: Theory and Applications. In Earth Surface Remote Sensing II.; Cecchi, G., Zilioli, E., Eds.; SPIE: Barcelona, Spain, 1998; pp. 101–113. [Google Scholar]
- Genzano, N.; Aliano, C.; Filizzola, C.; Pergola, N.; Tramutoli, V. A Robust Satellite Technique for Monitoring Seismically Active Areas: The Case of Bhuj–Gujarat Earthquake. Tectonophysics 2007, 431, 197–210. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Kang, G.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing Long Wave Radiation Variability from IR Satellite Data Prior to Major Earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Genzano, N.; Aliano, C.; Corrado, R.; Filizzola, C.; Lisi, M.; Mazzeo, G.; Paciello, R.; Pergola, N.; Tramutoli, V. RST Analysis of MSG-SEVIRI TIR Radiances at the Time of the Abruzzo 6 April 2009 Earthquake. Nat. Hazards Earth Syst. Sci. 2009, 9, 2073–2084. [Google Scholar] [CrossRef]
- Song, D.; Zang, L.; Shan, X.; Yuan, Y.; Cui, J.; Shao, H.; Shen, C.; Shi, H. A Study on the Algorithm for Extracting Earthquake Thermal Infrared Anomalies Based on the Yearly Trend of LST. Seismol. Geol. 2016, 38, 680–695. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, Q. A Statistical Analysis of TIR Anomalies Extracted by RSTs in Relation to an Earthquake in the Sichuan Area Using MODIS LST Data. Nat. Hazards Earth Syst. Sci. 2019, 19, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Kouli, M.; Peleli, S.; Saltas, V.; Makris, J.; Vallianatos, F. Robust Satellite Techniques for Mapping Thermal Anomalies Possibly Related to Seismic Activity of March 2021, Thessaly Earthquakes. Bull. Geol. Soc. Greece 2021, 58, 105. [Google Scholar] [CrossRef]
- Institute of Geophysics, China Earthquake Administration A Briefing on Scientific and Technological Support for a Magnitude 5.5 Earthquake in Ninglang County, Lijiang City, Yunnan Province, On 2 January 2022. Available online: https://www.cea-igp.ac.cn/kydt/278803.html (accessed on 20 December 2022).
- Global CMT Search Results. Available online: https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2022&mo=1&day=2&otype=ymd&oyr=2022&omo=1&oday=2&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=5&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000<s=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0 (accessed on 20 December 2022).
- M 5.4-99 Km E of Shangri-La, China. Available online: https://earthquake.usgs.gov/earthquakes/eventpage/us7000g8fk/origin/detail (accessed on 20 December 2022).
- GEOFON Event Gfz2022acjl: Yunnan, China. Available online: http://geofon.gfz-potsdam.de/eqinfo/event.php?id=gfz2022acjl (accessed on 20 December 2022).
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chu, Q. Basic characteristics of active tectonics of China. Sci. China Ser. D-Earth Sci. 2003, 46, 356–372. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; Nguyen, Q. NASADEM Global Elevation Model: Methods and Progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Wang, E.; Burchfiel, B.C.; Royden, L.H.; Chen, L.; Chen, J.; Li, W.; Chen, Z. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China; Geological Society of America: Boulder, FL, USA, 1998; Volume 327, pp. 1–108. [Google Scholar]
- Wang, E.; Burchfiel, B.C. Interpretation of Cenozoic Tectonics in the Right-Lateral Accommodation Zone Between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. Int. Geol. Rev. 1997, 39, 191–219. [Google Scholar] [CrossRef]
- Xu, X.; Wen, X.; Zheng, R.; Ma, W.; Song, F.; Yu, G. The Latest Tectonic Change Patterns and Dynamic Sources of Active Blocks in the Sichuan-Yunnan Region. Sci. China Ser. D-Earth Sci. 2003, 33, 151–162. (In Chinese) [Google Scholar]
- Wu, Z.; Long, C.; Fan, T.; Zhou, C.; Feng, H.; Yang, Z.; Tong, Y. The Arc Rotational-Shear Active Tectonic System on the Southeastern Margin of Tibetan Plateau and Its Dynamic Characteristics and Mechanism. Geol. Bull. China 2015, 34, 1–31. [Google Scholar]
- Chang, Z.; Yang, S.; Zhou, Q.; Zhang, Y.; Xie, Y. Discussion of Seismogenic Structure of the June 24, 2012 Ninglang-Yanyuan Ms 5.7 Earthquake. Seismol. Geol. 2013, 35, 37–49. [Google Scholar]
- An, X.; Chang, Z.; Chen, Y.; Mao, X.; Zhuang, R. Quaternary Active Faults in Yunnan and “Distribution Map of Quaternary Active Faults in Yunnan”; Seismological Press: Beijing, China, 2018. [Google Scholar]
- Kan, R.; Zhang, S.; Yan, F.; Yu, L. Present Tectonic Stress Field and Its Relation to the Characteristics of Recent Tectonic Activity in Southwestern China. Chin. J. Sin. 1977, 20, 96–109. (In Chinese) [Google Scholar]
- Regional Geological Survey Report of G−47−5 1:200,000 in Yongning. Available online: http://www.ngac.org.cn/Data/archivesDetails?mdidnt=cgdoi.n0001%2Fx00068440 (accessed on 20 December 2022).
- Casu, F.; Manzo, M.; Lanari, R. A Quantitative Assessment of the SBAS Algorithm Performance for Surface Deformation Retrieval from DInSAR Data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.; Sacco, G.F.; Zebker, H. The InSAR Scientific Computing Environment. In Proceedings of the EUSAR 2012, 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 23 April 2012; pp. 730–733. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Zebker, H.A. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, H.; Agram, P.; Simons, M. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fattahi, H.; Amelung, F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Pergola, N.; Tramutoli, V.; Marchese, F.; Scaffidi, I.; Lacava, T. Improving Volcanic Ash Cloud Detection by a Robust Satellite Technique. Remote Sens. Environ. 2004, 90, 1–22. [Google Scholar] [CrossRef]
- Pergola, N.; D’Angelo, G.; Lisi, M.; Marchese, F.; Mazzeo, G.; Tramutoli, V. Time Domain Analysis of Robust Satellite Techniques (RST) for near Real-Time Monitoring of Active Volcanoes and Thermal Precursor Identification. Phys. Chem. Earth Parts A/B/C 2009, 34, 380–385. [Google Scholar] [CrossRef]
- Casciello, D.; Lacava, T.; Pergola, N.; Tramutoli, V. Robust Satellite Techniques for oil spill detection and monitoring using AVHRR thermal infrared bands. Int. J. Remote Sens. 2011, 32, 4107–4129. [Google Scholar] [CrossRef]
- Lacava, T.; Filizzola, C.; Pergola, N.; Sannazzaro, F.; Tramutoli, V. Improving Flood Monitoring by the Robust AVHRR Technique (RAT) Approach: The Case of the April 2000 Hungary Flood. Int. J. Remote Sens. 2010, 31, 2043–2062. [Google Scholar] [CrossRef]
- Cuomo, V.; Lasaponara, R.; Tramutoli, V. Evaluation of a New Satellite-Based Method for Forest Fire Detection. Int. J. Remote Sens. 2001, 22, 1799–1826. [Google Scholar] [CrossRef]
- Pergola, N.; Aliano, C.; Coviello, I.; Filizzola, C.; Genzano, N.; Lacava, T.; Lisi, M.; Mazzeo, G.; Tramutoli, V. Using RST Approach and EOS-MODIS Radiances for Monitoring Seismically Active Regions: A Study on the 6 April 2009 Abruzzo Earthquake. Nat. Hazards Earth Syst. Sci. 2010, 10, 239–249. [Google Scholar] [CrossRef]
- Chao, J.; Zhao, Z.; Lai, Z.; Xu, S.; Liu, J.; Li, Z.; Zhang, X.; Chen, Q.; Yang, H.; Zhao, X. Detecting Geothermal Anomalies Using Landsat 8 Thermal Infrared Remote Sensing Data in the Ruili Basin, Southwest China. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- AppEEARS Team Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). Available online: https://lpdaac.usgs.gov/tools/appeears/ (accessed on 20 December 2022).
- Aliano, C.; Corrado, R.; Filizzola, C.; Genzano, N.; Pergola, N.; Tramutoli, V. Robust TIR Satellite Techniques for Monitoring Earthquake Active Regions: Limits, Main Achievements and Perspectives. Ann. Geophys. 2008, 51, 303–318. [Google Scholar] [CrossRef]
- Qu, C.; Shan, X.; Zhang, G.; Xu, X.; Song, X.; Zhang, G.; Liu, Y. The Research Progress in Measurement of Fault Activity by Time Series Insar and Discussion of Related Issues. Seismol. Geol. 2014, 36, 731–748. (In Chinese) [Google Scholar]
- He, P.; Wen, Y.; Ding, K.; Xu, C. Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E–W Thinning in Northern Tibet. Remote Sens. 2020, 12, 3012. [Google Scholar] [CrossRef]
- Qiang, Z.; Kong, L.; Guo, M.; Wang, Y.; Zheng, L.; Lin, C.; Zhao, Y. An Experimental Study on Temperature Increasing Mechanism of Satellitic Thermo-Infrared. Acta Seismol. Sin. 1997, 19, 197–201. (In Chinese) [Google Scholar] [CrossRef]
- Deng, M.; Geng, N.; Cui, C.; Zhi, Y.; Fan, Z.; Ji, Q. The Study on the Variation of Thermal State of Rocks Caused by the Variation of Stress State of Rocks. Earthq. Res. China 1997, 13, 179–185. (In Chinese) [Google Scholar]
- Filizzola, C.; Corrado, A.; Genzano, N.; Lisi, M.; Pergola, N.; Colonna, R.; Tramutoli, V. RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sens. 2022, 14, 381. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. Eos Trans. AGU 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Agency | Longitude/ (°E) | Latitude/ (°N) | Source Depth/km | Section Surface I | Section Surface II | Magnitude | ||||
---|---|---|---|---|---|---|---|---|---|---|
Strike | Dip | Slip | Strike | Dip | Slip | |||||
CENC | 100.65 | 27.79 | 10 | - | - | - | - | - | - | Ms 5.5 |
IGP–CEA 1 | 100.65 | 27.79 | 3 | 300 | 81 | −161 | 206 | 71 | −9 | Mw 5.3 |
IGP–CEA 2 | - | 198 | 63 | −37 | 307 | 58 | −147 | - | ||
GCMT | 100.78 | 27.73 | 14.4 | 302 | 61 | −157 | 200 | 70 | −31 | Mw 5.3 |
USGS | 100.718 | 27.800 | 35.7 | - | - | - | - | - | - | Mw 5.4 |
GFZ | 100.77 | 27.78 | 17 | 183 | 41 | −50 | 316 | 59 | −119 | Mw 5.3 |
Satellite Orbit Type | Reference | Secondary | Orbit Number | Time Interval/d | Vertical Baseline/m | Incidence Angle/° | Flight Azimuth/° |
---|---|---|---|---|---|---|---|
Ascending | 2021-12-22 | 2022-01-03 | 99 | 12 | −15.7 | 42.26 | −12.53 |
Descending | 2021-12-12 | 2022-01-05 | 135 | 24 | −17.9 | 41.70 | −167.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Z.; Chao, J.; Zhao, Z.; Wen, M.; Yang, H.; Chai, W.; Yao, Y.; Zhao, X.; Chen, Q.; Liu, J. Relationship between Crustal Deformation and Thermal Anomalies in the 2022 Ninglang Ms 5.5 Earthquake in China: Clues from InSAR and RST. Remote Sens. 2023, 15, 1271. https://doi.org/10.3390/rs15051271
Lai Z, Chao J, Zhao Z, Wen M, Yang H, Chai W, Yao Y, Zhao X, Chen Q, Liu J. Relationship between Crustal Deformation and Thermal Anomalies in the 2022 Ninglang Ms 5.5 Earthquake in China: Clues from InSAR and RST. Remote Sensing. 2023; 15(5):1271. https://doi.org/10.3390/rs15051271
Chicago/Turabian StyleLai, Zhibin, Jiangqin Chao, Zhifang Zhao, Mingchun Wen, Haiying Yang, Wang Chai, Yuan Yao, Xin Zhao, Qi Chen, and Jianyu Liu. 2023. "Relationship between Crustal Deformation and Thermal Anomalies in the 2022 Ninglang Ms 5.5 Earthquake in China: Clues from InSAR and RST" Remote Sensing 15, no. 5: 1271. https://doi.org/10.3390/rs15051271
APA StyleLai, Z., Chao, J., Zhao, Z., Wen, M., Yang, H., Chai, W., Yao, Y., Zhao, X., Chen, Q., & Liu, J. (2023). Relationship between Crustal Deformation and Thermal Anomalies in the 2022 Ninglang Ms 5.5 Earthquake in China: Clues from InSAR and RST. Remote Sensing, 15(5), 1271. https://doi.org/10.3390/rs15051271