Window-Based Filtering Aerosol Retrieval Algorithm of Fine-Scale Remote Sensing Images: A Case Using Sentinel-2 Data in Beijing Region
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. Sentinel-2 Images
2.2.2. Ground Measurements
2.2.3. MODIS MAIAC AOD Product
No. | Name | Level | Band | Time Span | Spatial Resolution (m) | Center Wavelength (nm) | Notes |
---|---|---|---|---|---|---|---|
1 | Sentinel-2 | 1C | 1 | 2017–2021 | 60 | 443 | 134 images used for retrieval, and 43 images used as reference |
2 | Sentinel-2 | 1C | 2 | 2017 | 10 | 490 | Sensitive to Vegetation Aerosol Scattering (blue) [36], and used in discussion section as an example. |
3 | SCL | 2A | / | 2017–2021 | 60 | / | Used for removing cloud, water, shadow, etc. |
4 | MAIAC | / | / | 2017–2021 | 1000 | 550 | Used for validation. |
3. AOD Retrieval Algorithm
3.1. Theoretical Basis
3.2. AOD Retrieval
3.2.1. Filtering
3.2.2. Retrieval
3.2.3. Interpolating
3.3. Aerosol Model
4. Results
4.1. Comparison with AERONET
4.2. Evaluations in Spatial Distribution
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haywood, J.; Boucher, O. Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Williams, A.I.L.; Stier, P.; Dagan, G.; Watson-Parris, D. Strong Control of Effective Radiative Forcing by the Spatial Pattern of Absorbing Aerosol. Nat. Clim. Chang. 2022, 12, 735–742. [Google Scholar] [CrossRef]
- Huang, D.; Xu, J.; Zhang, S. Valuing the Health Risks of Particulate Air Pollution in the Pearl River Delta, China. Environ. Sci. Policy 2012, 15, 38–47. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Tanré, D.; Nakajima, T. Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. Bull. Am. Meteorol. Soc. 1999, 80, 2229–2260. [Google Scholar] [CrossRef]
- Viana, M.; Pey, J.; Querol, X.; Alastuey, A.; de Leeuw, F.; Lükewille, A. Natural Sources of Atmospheric Aerosols Influencing Air Quality across Europe. Sci. Total Environ. 2014, 472, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Xun, L.; Lu, H.; Qian, C.; Zhang, Y.; Lyu, S.; Li, X. Analysis of Aerosol Optical Depth from Sun Photometer at Shouxian, China. Atmosphere 2021, 12, 1226. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, J.; Zhang, N.; He, Y.; Sun, Y.; Liu, X.; Yu, H.; Sun, L. Retrieving High-Resolution Aerosol Optical Depth from GF-4 PMS Imagery in Eastern China. Remote Sens. 2021, 13, 3752. [Google Scholar] [CrossRef]
- Ma, X.; Ding, Y.; Shi, H.; Yan, W.; Dou, X.; Ochege, U.F.; Luo, G.; Zhao, C. Spatiotemporal Variations in Aerosol Optical Depth and Associated Risks for Populations in the Arid Region of Central Asia. Sci. Total Environ. 2021, 816, 151558. [Google Scholar] [CrossRef]
- Krasnoshchekov, K.V.; Yakubailik, O.E. Assessment of the Environmental Situation in Krasnoyarsk Using Remote Sensing Data. In Proceedings of the SDM-2021: All-Russian Conference, Novosibirsk, Russia, 24–27 August 2021; pp. 484–492. [Google Scholar]
- de Leeuw, G.; Fan, C.; Tsung, J.; Li, Y.; Ou, Y.; Zhu, S. Spatiotemporal Variation and Provincial Scale Differences of the AOD across China during 2000–2021. Atmos. Pollut. Res. 2022, 13, 101359. [Google Scholar] [CrossRef]
- Huang, J.; Arnott, W.P.; Barnard, J.C.; Holmes, H.A. Theoretical Uncertainty Analysis of Satellite Retrieved Aerosol Optical Depth Associated with Surface Albedo and Aerosol Optical Properties. Remote Sens. 2021, 13, 344. [Google Scholar] [CrossRef]
- Zhang, H.; Lyapustin, A.; Wang, Y.; Kondragunta, S.; Laszlo, I.; Ciren, P.; Hoff, R.M. A Multi-Angle Aerosol Optical Depth Retrieval Algorithm for Geostationary Satellite Data over the United States. Atmos. Chem. Phys. 2011, 11, 11977–11991. [Google Scholar] [CrossRef]
- Wei, X.; Chang, N.-B.; Bai, K.; Gao, W. Satellite Remote Sensing of Aerosol Optical Depth: Advances, Challenges, and Perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1640–1725. [Google Scholar] [CrossRef]
- Wei, J.; Huang, B.; Sun, L.; Zhang, Z.; Wang, L.; Bilal, M. A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images over Complex Surfaces. J. Geophys. Res. Atmos. 2017, 122, 13,338–13,355. [Google Scholar] [CrossRef]
- Sun, L.; Wei, J.; Bilal, M.; Tian, X.; Jia, C.; Guo, Y.; Mi, X. Aerosol Optical Depth Retrieval over Bright Areas Using Landsat 8 OLI Images. Remote Sens. 2016, 8, 23. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Yang, K.; Cermak, J.; Chen, Y. High-Resolution Aerosol Retrieval over Urban Areas Using Sentinel-2 Data. Atmos. Res. 2021, 264, 105829. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Gordon, H.R.; Nakajima, T.; Lenoble, J.; Frouin, R.; Grassl, H.; Herman, B.M.; King, M.D.; Teillet, P.M. Passive Remote Sensing of Tropospheric Aerosol and Atmospheric Correction for the Aerosol Effect. J. Geophys. Res. Atmos. 1997, 102, 16815–16830. [Google Scholar] [CrossRef]
- Fan, X.; Qu, Y. Retrieval of High Spatial Resolution Aerosol Optical Depth from HJ-1 A/B CCD Data. Remote Sens. 2019, 11, 832. [Google Scholar] [CrossRef]
- Lin, H.; Li, S.; Xing, J.; He, T.; Yang, J.; Wang, Q. High Resolution Aerosol Optical Depth Retrieval over Urban Areas from Landsat-8 OLI Images. Atmos. Environ. 2021, 261, 118591. [Google Scholar] [CrossRef]
- Jia, C.; Sun, L.; Chen, Y.; Liu, Q.; Yu, H.; Zhang, W. Satellite Aerosol Retrieval Using Scene Simulation and Deep Belief Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Sun, K.; Chen, X.; Zhu, Z.; Zhang, T. High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data. Remote Sens. 2017, 9, 89. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. SENTINEL-2 SEN2COR: L2A Processor for Users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Ouwehand, L., Ed.; Spacebooks Online: Prague, Czech Republic, 2016; Volume SP-740, pp. 1–8. [Google Scholar]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; et al. An Emerging Ground-Based Aerosol Climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res. Atmos. 2001, 106, 12067–12097. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global Evaluation of the Collection 5 MODIS Dark-Target Aerosol Products over Land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Ångström, A. The Parameters of Atmospheric Turbidity. Tellus 1964, 16, 64–75. [Google Scholar] [CrossRef]
- Lyapustin, A.; Martonchik, J.; Wang, Y.; Laszlo, I.; Korkin, S. Multiangle Implementation of Atmospheric Correction (MAIAC): 1. Radiative Transfer Basis and Look-Up Tables. J. Geophys. Res. 2011, 116, D03210. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle Implementation of Atmospheric Correction (MAIAC): 2. Aerosol Algorithm. J. Geophys. Res. Atmos. 2011, 116, D03. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, C.; Korkin, S. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC): 3. Atmospheric Correction. Remote Sens. Environ. 2012, 127, 385–393. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.; Strahler, A. An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Tao, M.; Wei, J.; Jin, J.; Tan, Y.; Wang, Q. Validation of Himawari-8 Aerosol Optical Depth Retrievals over China. Atmos. Environ. 2019, 199, 32–44. [Google Scholar] [CrossRef]
- Li, Y.; Shi, G.; Sun, Z. Evaluation and Improvement of MODIS Aerosol Optical Depth Products over China. Atmos. Environ. 2020, 223, 117251. [Google Scholar] [CrossRef]
- Chen, X.; Ding, J.; Jie, L.; Wang, J.; Ge, X.; Wang, R.; Zuo, H. Validation and Comparison of High-Resolution MAIAC Aerosol Products over Central Asia. Atmos. Environ. 2021, 251, 118273. [Google Scholar] [CrossRef]
- Qin, W.; Fang, H.; Zhang, M.; Xin, S.; Bilal, M.; Liang, X. MODIS High-Resolution MAIAC Aerosol Product: Global Validation and Analysis. Atmos. Environ. 2021, 264, 118684. [Google Scholar] [CrossRef]
- Ashcroft, P.; Wentz, F.J. Algorithm Theoretical Basis Document (ATBD) AMSR Level 2A Algorithm; RSS Tech. Report 121599B-1; Remote Sensing Systems: Santa Rosa, CA, USA, 2000. [Google Scholar]
- Tanre, D.; Devaux, C.; Herman, M.; Deschamps, P.Y. Estimation of Saharan Aerosol Optical Thickness from Blurring Effects in Thematic Mapper Data. J. Geophys. Res. 1988, 931, 15955–15964. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Tanre, D.; Herman, M.; Deschamps, P.Y. Influence of the Background Contribution upon Space Measurements of Ground Reflectance. Appl. Opt. 1981, 20, 3676–3684. [Google Scholar] [CrossRef]
- Liu, G.-R.; Chen, A.J.; Lin, T.-H.; Kuo, T.-H. Applying SPOT Data to Estimate the Aerosol Optical Depth and Air Quality. Environ. Model. Softw. 2002, 17, 3–9. [Google Scholar] [CrossRef]
- Risyanto. Background Optical Depth Correction over Urban Areas to Improve Land Aerosol Retrieval from Himawari-8. IOP Conf. Ser. Earth Environ. Sci. 2021, 893, 012060. [Google Scholar] [CrossRef]
- Su, X.; Wang, L.; Zhang, M.; Qin, W.; Bilal, M. A High-Precision Aerosol Retrieval Algorithm (HiPARA) for Advanced Himawari Imager (AHI) Data: Development and Verification. Remote Sens. Environ. 2021, 253, 112221. [Google Scholar] [CrossRef]
- Emili, E.; Lyapustin, A.; Wang, Y.; Popp, C.; Korkin, S.; Zebisch, M.; Wunderle, S.; Petitta, M. High Spatial Resolution Aerosol Retrieval with MAIAC: Application to Mountain Regions. J. Geophys. Res. Atmos. 2011, 116, D23. [Google Scholar] [CrossRef]
- Hauser, A. NOAA AVHRR Derived Aerosol Optical Depth over Land. J. Geophys. Res. 2005, 110, D08204. [Google Scholar] [CrossRef]
- Vivone, G.; Arienzo, A.; Bilal, M.; Garzelli, A.; Pappalardo, G.; Lolli, S. A Dark Target Kalman Filter Algorithm for Aerosol Property Retrievals in Urban Environment Using Multispectral Images. Urban Clim. 2022, 43, 101135. [Google Scholar] [CrossRef]
- Tanre, D.; Deuze, J.L.; Herman, M.; Santer, R.; Vermote, E. Second Simulation Of The Satellite Signal in the Solar Spectrum—6s Code. In Proceedings of the 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, USA, 20–24 May 1990; p. 187. [Google Scholar]
- Chen, Z.-Y.; Jin, J.-Q.; Zhang, R.; Zhang, T.-H.; Chen, J.-J.; Yang, J.; Ou, C.-Q.; Guo, Y. Comparison of Different Missing-Imputation Methods for MAIAC (Multiangle Implementation of Atmospheric Correction) AOD in Estimating Daily PM2.5 Levels. Remote Sens. 2020, 12, 3008. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.; Smirnov, A.; Kaufman, Y.; King, M.; Tanré, D.; Slutsker, I. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global Aerosol Optical Properties and Application to Moderate Resolution Imaging Spectroradiometer Aerosol Retrieval over Land. J. Geophys. Res. Atmos. 2007, 112, D13. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J. Dynamic Aerosol Model: Urban/Industrial Aerosol. J. Geophys. Res. Atmos. 1998, 103, 13859–13871. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC Algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Kusumaningtyas, S.D.A.; Tonokura, K.; Aldrian, E.; Giles, D.M.; Holben, B.N.; Gunawan, D.; Lestari, P.; Iriana, W. Aerosols Optical and Radiative Properties in Indonesia Based on AERONET Version 3. Atmos. Environ. 2022, 282, 119174. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Q.; Zhong, B.; Sun, L.; Xin, X. Retrieval of Aerosol Optical Thickness from HJ-1A/B Images Using Structure Function Method. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 5, pp. V-413–V-416. [Google Scholar]
- Zhou, G.; Zhang, Y.; Ma, Z.; Xu, W.; Zhang, K.; Liu, J.; Tan, Y. A Geostatistics-Based Method to Determine the Pixel Distance in a Structure Function Model for Aerosol Optical Depth Inversion. Atmosphere 2017, 8, 6. [Google Scholar] [CrossRef]
- Virtanen, T.H.; Kolmonen, P.; Sogacheva, L.; Rodríguez, E.; Saponaro, G.; de Leeuw, G. Collocation Mismatch Uncertainties in Satellite Aerosol Retrieval Validation. Atmos. Meas. Tech. 2018, 11, 925–938. [Google Scholar] [CrossRef]
- Jin, Y.; Hao, Z.; Huang, H.; Wang, T.; Mao, Z.; Pan, D. Evaluation of LaSRC Aerosol Optical Depth from Landsat-8 and Sentinel-2 in Guangdong-Hong Kong-Macao Greater Bay Area, China. Atmos. Environ. 2022, 280, 119128. [Google Scholar] [CrossRef]
No. | Name | Longitude (°E) | Latitude (°N) | City | Level |
---|---|---|---|---|---|
1 | Beijing | 116.38 | 39.98 | Beijing | 1.5 |
2 | Beijing_RADI | 116.38 | 40.00 | Beijing | 1.5 |
3 | Beijing_PKU | 116.31 | 39.99 | Beijing | 1.5 |
4 | Beijing-CAMS | 116.32 | 39.93 | Beijing | 1.5 |
5 | xianghe | 116.96 | 39.75 | Langfang | 1.5 |
Model | Refractive Index: k | |||
---|---|---|---|---|
fine | ||||
coarse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, Y.; Ma, Q.; Liu, Q.; Li, W.; Miao, Z.; Zhu, C. Window-Based Filtering Aerosol Retrieval Algorithm of Fine-Scale Remote Sensing Images: A Case Using Sentinel-2 Data in Beijing Region. Remote Sens. 2023, 15, 2172. https://doi.org/10.3390/rs15082172
Zhou J, Li Y, Ma Q, Liu Q, Li W, Miao Z, Zhu C. Window-Based Filtering Aerosol Retrieval Algorithm of Fine-Scale Remote Sensing Images: A Case Using Sentinel-2 Data in Beijing Region. Remote Sensing. 2023; 15(8):2172. https://doi.org/10.3390/rs15082172
Chicago/Turabian StyleZhou, Jian, Yingjie Li, Qingmiao Ma, Qiaomiao Liu, Weiguo Li, Zilu Miao, and Changming Zhu. 2023. "Window-Based Filtering Aerosol Retrieval Algorithm of Fine-Scale Remote Sensing Images: A Case Using Sentinel-2 Data in Beijing Region" Remote Sensing 15, no. 8: 2172. https://doi.org/10.3390/rs15082172