The Sensitivity of Large Eddy Simulations to Grid Resolution in Tropical Cyclone High Wind Area Applications
Abstract
:1. Introduction
2. Numerical Experiment Settings
3. Results
3.1. Point Metrics
3.2. Spatial Distribution and Statistics of 10 m Wind Speeds
3.3. Vertical Distribution of the Simulated Wind, Temperature, and Humidity
3.4. The Rolls
3.5. The Parameterized Turbulent Characteristics
4. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nolan, D.S.; Zhang, J.A.; Stern, D.P. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Weather Rev. 2009, 137, 3651–3674. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, F.; Pu, Z. Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes. Adv. Atmos. Sci. 2017, 34, 482–496. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.A.; Kieu, C.; Marks, F.D. Sensitivity of hurricane intensity and structure to two types of planetary boundary layer parameterization schemes in idealized HWRF simulations. Trop. Cyclone Res. Rev. 2018, 7, 201–211. [Google Scholar]
- Kepert, J.D. Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Weather Rev. 2012, 140, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, S.G.; Marks, F.; Zhang, J.A.; Zhang, X.; Bao, J.W.; Tallapragada, V. A study of the impacts of vertical diffusion on the structure and intensity of tropical cyclones using the high resolution HWRF system. J. Atmos. Sci. 2013, 70, 524–541. [Google Scholar] [CrossRef]
- Rai, D.; Pattnaik, S. Sensitivity of tropical cyclone intensity and structure to planetary boundary layer parameterization. Asia-Pac. J. Atmos. Sci. 2018, 54, 473–488. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Zhong, R.; Han, B.; Wu, R. Impacts of wave feedbacks and planetary boundary layer parameterization schemes on air-sea coupled simulations: A case study for Typhoon Maria in 2018. Atmos. Res. 2022, 278, 106344. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Janjić, Z. Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Mesoscale Model; Office Note #437; National Centers for Environmental Prediction Office: College Park, MD, USA, 2001. [Google Scholar]
- Wyngaard, J.C. Toward numerical modeling in the “Terra Incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Shin, H.H.; Hong, S.Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Weather Rev. 2015, 143, 250–271. [Google Scholar] [CrossRef]
- Ito, J.; Niino, H.; Nakanishi, M.; Moeng, C.H. An extension of the Mellor-Yamada model to the terra incognita zone for dry convective mixed layers in the free convection regime. Bound.-Lay. Meteorol. 2015, 157, 23–43. [Google Scholar] [CrossRef]
- Honnert, R.; Couvreux, F.; Masson, V.; Lancz, D. Sampling the structure of convective turbulence and implications for grey-zone parametrizations. Bound.-Lay. Meteorol. 2016, 160, 133–156. [Google Scholar] [CrossRef]
- Kitamura, Y. Improving a turbulence scheme for the terra incognita in a dry convective boundary layer. J. Meteorol. Soc. Jpn. 2016, 94, 491–506. [Google Scholar] [CrossRef] [Green Version]
- Goger, B.; Rotach, M.W.; Gohm, A.; Fuhrer, O.; Stiperski, I.; Holtslag, A.A. The impact of three-dimensional effects on the simulation of turbulence kinetic energy in a major alpine valley. Bound.-Lay. Meteorol. 2018, 168, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Bao, J.W.; Chen, B.; Grell, E.D. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model. Mon. Weather Rev. 2018, 146, 2023–2045. [Google Scholar] [CrossRef]
- Kurowski, M.J.; Teixeira, J. A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer. J. Atmos. Sci. 2018, 75, 675–690. [Google Scholar] [CrossRef]
- Efstathiou, G.A.; Plant, R.S. A dynamic extension of the pragmatic blending scheme for scale-dependent sub-grid mixing. Q. J. Roy. Meteor. Soc. 2019, 145, 884–892. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Niino, H. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Lay. Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Deardorff, J.W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 1970, 41, 453–480. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Large-eddy simulation of roll vortices in a hurricane boundary layer. J. Atmos. Sci. 2012, 69, 3558–3575. [Google Scholar] [CrossRef]
- Xiao, S.; Peng, C.; Yang, D. Large-eddy simulation of bubble plume in stratified crossflow. Phys. Rev. Fluids 2021, 6, 044613. [Google Scholar] [CrossRef]
- Li, Y.; Tang, J. Atmospheric boundary layer processes, characteristics and parameterization. Atmosphere 2023, 14, 691. [Google Scholar] [CrossRef]
- Sullivan, P.P.; Patton, E.G. The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 2011, 68, 2395–2415. [Google Scholar] [CrossRef] [Green Version]
- Salesky, S.T.; Chamecki, M.; Bou-Zeid, E. On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Lay. Meteorol. 2017, 163, 41–68. [Google Scholar] [CrossRef]
- Zhou, B.; Simon, J.S.; Chow, F.K. The convective boundary layer in the terra incognita. J. Atmos. Sci. 2014, 71, 2545–2563. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, B. Variations of subgrid-scale turbulent fluxes in the dry convective boundary layer at gray zone resolutions. J. Atmos. Sci. 2022, 79, 3245–3261. [Google Scholar] [CrossRef]
- Duan, Y.; Wan, Q.; Huang, J.; Zhao, K.; Yu, H.; Wang, Y.; Zhao, D.; Feng, J.; Tang, J.; Chen, P.; et al. Landfalling tropical cyclone research project (LTCRP) in China. B. Am. Meteorol. Soc. 2019, 100, ES447–ES472. [Google Scholar] [CrossRef]
- Kuznetsova, A.M.; Dosaev, A.S.; Rusakov, N.S.; Poplavsky, E.I.; Troitskaya, Y.I. Methods of the polar low monitoring and modeling. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7260–7262. [Google Scholar]
- Saini, I.; Chandramouli, P.; Samaddar, A.; Ghosh, S. Quantifying tropical cyclone cloud cover using Envisat retrievals—An example of a recent severe tropical cyclone, ‘Thane’. Int. J. Remote Sens. 2013, 34, 4933–4950. [Google Scholar] [CrossRef]
- Chen, X.; Bryan, G.H.; Zhang, J.A.; Cione, J.J.; Marks, F.D. A framework for simulating the tropical cyclone boundary layer using large-eddy simulation and its use in evaluating PBL parameterizations. J. Atmos. Sci. 2021, 78, 3559–3574. [Google Scholar] [CrossRef]
- Zhu, P. A multiple scale modeling system for coastal hurricane wind damage mitigation. Nat. Hazards 2008, 47, 577–591. [Google Scholar] [CrossRef]
- Rotunno, R.; Chen, Y.; Wang, W.; Davis, C.; Dudhia, J.; Holland, G.J. Large-eddy simulation of an idealized tropical cyclone. B. Am. Meteorol. Soc. 2009, 90, 1783–1788. [Google Scholar] [CrossRef]
- Green, B.W.; Zhang, F. Numerical simulations of Hurricane Katrina (2005) in the turbulent gray zone. J. Adv. Model. Earth Syst. 2015, 7, 142–161. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Liu, Q.; Li, Y. Prevalence of tornado-scale vortices in the tropical cyclone eyewall. Proc. Natl. Acad. Sci. USA 2018, 115, 8307–8310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhu, P.; Gao, Z.; Cheung, K.K. Sensitivity of large eddy simulations of tropical cyclone to sub-grid scale mixing parameterization. Atmos. Res. 2022, 265, 105922. [Google Scholar] [CrossRef]
- Li, X.; Pu, Z. Vertical eddy diffusivity parameterization based on a large-eddy simulation and its impact on prediction of hurricane landfall. Geophys. Res. Lett. 2021, 48, e2020GL090703. [Google Scholar] [CrossRef]
- Xu, H.; Wang, H.; Duan, Y. An investigation of the impact of different turbulence schemes on the tropical cyclone boundary layer at turbulent gray-zone resolution. J. Geophys. Res. Atmos. 2021, 126, e2021JD035327. [Google Scholar] [CrossRef]
- Chen, X. How do planetary boundary layer schemes perform in hurricane conditions: A comparison with large-eddy simulations. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003088. [Google Scholar] [CrossRef]
- Wang, L.Y.; Tan, Z.M. Deep learning parameterization of the tropical cyclone boundary layer. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003034. [Google Scholar] [CrossRef]
- Ye, G.; Zhang, X.; Yu, H. Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003530. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; Volume 145, p. 145. [Google Scholar]
- Lilly, D. The Representation of Small-Scale Turbulence in Numerical Simulation Experiments; Technical Report; National Center for Atmospheric Research: Boulder, CO, USA, 1966. [Google Scholar]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Lay. Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Beljaars, A.C. The parametrization of surface fluxes in large-scale models under free convection. Q. J. Roy. Meteor. Soc. 1995, 121, 255–270. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Dudhia, J. A Multi-layer Soil Temperature Model for MM5. In Proceedings of the Paper Presented at 6th Annual MM5 Users Workshop, Boulder, CO, USA, 27–30 June 1996. [Google Scholar]
- Kain, J.S. The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction; National Weather Service; NOAA; U.S. Department of Commerce. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory: Boulder, CO, USA, 2015.
- Kossin, J.P.; Schubert, W.H. Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci. 2001, 58, 2196–2209. [Google Scholar] [CrossRef]
- Deng, D.; Ritchie, E.A. High-resolution simulation of tropical cyclone Debbie (2017). Part I: The inner-core structure and evolution during offshore intensification. J. Atmos. Sci. 2023, 80, 441–456. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, L.; Qin, N.; Li, Y. Storm-scale and fine-scale boundary layer structures of tropical cyclones simulated with the WRF-LES framework. J. Geophys. Res. Atmos. 2021, 126, e2021JD035511. [Google Scholar] [CrossRef]
- Li, X.; Pu, Z. Dynamic mechanisms associated with the structure and evolution of roll vortices and coherent turbulence in the hurricane boundary layer: A large eddy simulation during the landfall of Hurricane Harvey. Bound.-Lay. Meteorol. 2023, 186, 615–636. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y. Sensitivity of fine-scale structure in tropical cyclone boundary layer to model horizontal resolution at sub-kilometer grid spacing. Front. Earth Sci. 2021, 9, 707274. [Google Scholar] [CrossRef]
- Honnert, R.; Efstathiou, G.A.; Beare, R.J.; Ito, J.; Lock, A.; Neggers, R.; Plant, R.S.; Shin, H.H.; Tomassini, L.; Zhou, B. The atmospheric boundary layer and the “gray zone” of turbulence: A critical review. J. Geophys. Res. Atmos. 2020, 125, e2019JD030317. [Google Scholar] [CrossRef]
- Bryan, G.H.; Wyngaard, J.C.; Fritsch, J.M. Resolution requirements for the simulation of deep moist convection. Mon. Weather Rev. 2003, 131, 2394–2416. [Google Scholar] [CrossRef]
- Honnert, R.; Masson, V.; Couvreux, F. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci. 2011, 68, 3112–3131. [Google Scholar] [CrossRef]
Domain Name | d01 | d02 | d03 | d04 | d05_1 | d05_2 | d06_1 | d06_2 |
---|---|---|---|---|---|---|---|---|
Parent domain | / | d01 | d02 | d03 | d04 | d04 | d05_1 | d05_2 |
Horizontal resolution | 8100 m | 2700 m | 900 m | 300 m | 100 m | 60 m | 33 m | 20 m |
Horizontal grid points | 181 × 181 | 181 × 181 | 181 × 181 | 181 × 181 | 181 × 181 | 301 × 301 | 361 × 361 | 601 × 601 |
Timestep | 30 s | 10 s | 10/3 s | 10/9 s | 10/27 s | 2/9 s | 10/81 s | 2/27 s |
Start time | 08_12:00 | 08_12:00 | 08_12:00 | 08_18:00 | 08_19:00 | 08_19:00 | 08_20:00 | 08_20:00 |
End time | 08_22:00 | 08_22:00 | 08_22:00 | 08_22:00 | 08_22:00 | 08_22:00 | 08_22:00 | 08_22:00 |
Output interval | 30 min | 30 min | 30 min | 5 min | 5 min | 5 min | 5 min | 5 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, Y.; Wang, H.; Zhu, P.; Li, Y.; Ye, L.; Jiang, L.; Wang, A. The Sensitivity of Large Eddy Simulations to Grid Resolution in Tropical Cyclone High Wind Area Applications. Remote Sens. 2023, 15, 3785. https://doi.org/10.3390/rs15153785
Jing Y, Wang H, Zhu P, Li Y, Ye L, Jiang L, Wang A. The Sensitivity of Large Eddy Simulations to Grid Resolution in Tropical Cyclone High Wind Area Applications. Remote Sensing. 2023; 15(15):3785. https://doi.org/10.3390/rs15153785
Chicago/Turabian StyleJing, Yi, Hong Wang, Ping Zhu, Yubin Li, Lei Ye, Lifeng Jiang, and Anting Wang. 2023. "The Sensitivity of Large Eddy Simulations to Grid Resolution in Tropical Cyclone High Wind Area Applications" Remote Sensing 15, no. 15: 3785. https://doi.org/10.3390/rs15153785
APA StyleJing, Y., Wang, H., Zhu, P., Li, Y., Ye, L., Jiang, L., & Wang, A. (2023). The Sensitivity of Large Eddy Simulations to Grid Resolution in Tropical Cyclone High Wind Area Applications. Remote Sensing, 15(15), 3785. https://doi.org/10.3390/rs15153785