Uncovering Dynamics of Global Mangrove Gains and Losses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Data Collection and Validation
2.4. Data Analysis
3. Results
3.1. Mangrove Extent in 2020
3.2. Mangrove Change 2000–2020
3.3. Drivers of Mangrove Loss and Gain
4. Discussion
4.1. Estimates of Mangrove Extent
4.2. Anthropogenic Drivers of Mangrove Loss and Gain
4.3. Biophysical Drivers of Mangrove Loss and Gain
4.4. Methodological Strengths, Tradeoffs and Lessons Learned
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Classification Scheme
Appendix A.1. Terms and Definitions
- Global Forest Resources Assessment 2020 Terms and Definitions Document: http://www.fao.org/3/I8661EN/i8661en.pdf (accessed on 30 July 2023).
- 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Volume 4 Agriculture, Forestry and Other Land Use (Chapter 3 Consistent Representation of lands, 3.2. Land Use Categories): https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_03_Ch3_Representation.pdf (accessed on 30 July 2023).
Appendix A.2. Definitions for Centroid and Hexagon Current Land Use 2020
- Level 1
- Forest:
- Other Wooded Land:
- Other Land:
- Level 2
- Under Forest:
- Naturally regenerated forest:
- Includes forests for which it is not possible to distinguish whether planted or naturally regenerated.
- Includes forests with a mix of naturally regenerated native tree species and planted/seeded trees, and where the naturally regenerated trees are expected to constitute the major part of the growing stock at stand maturity.
- Includes coppice from trees originally established through natural regeneration.
- It includes naturally regenerated trees of the introduced species.
- Planted Forest:
- In this context, it predominantly means that the planted/seeded trees are expected to constitute more than 50 per cent of the growing stock at maturity.
- Includes coppice from trees that were originally planted or seeded.
- Specifically includes short rotation plantation for wood, fibre and energy.
- Specifically excludes forests planted for protection or ecosystem restoration.
- Specifically excludes forest established through planting or seeding which at stand maturity resembles or will resemble naturally regenerating forest.
- Mangroves:
- Under Other Land:
- Cropland
- Grassland
- Settlement
- Bare Soil
- Oil palm
- Other Land with Tree Cover (subcategory for Cropland, Grassland and Settlement):
- Land use is the key criterion for distinguishing between forest and other land with tree cover.
- Specifically includes palms (coconut, dates, etc.), tree orchards (fruit, nuts, olive, etc.), agroforestry and trees in urban settings.
- Includes groups of trees and scattered trees (e.g., trees outside the forest) in agricultural landscapes, parks, gardens and around buildings, provided that area, height and canopy cover criteria are met.
- It includes tree stands in agricultural production systems, such as fruit tree plantations/orchards. In these cases, the height threshold can be lower than 5 m.
- Includes agroforestry systems when crops are grown under tree cover and tree plantations established mainly for purposes other than wood.
- Excludes scattered trees with a canopy cover of less than 10 per cent, small groups of trees covering less than 0.5 hectares and tree lines less than 20 m wide (the latter are included under Forest).
- Level 4
- Aquaculture:
- Rice fields:
- Natural Mangrove Grasslands:
- Human Settlement:
- Infrastructure:
- Mining:
Appendix A.3. Definitions for Centroid and Hexagon Changes 2000–2010, 2010–2018 and 2018–2020
- Level 1
- Forest Loss or Mangrove Loss
- Forest Gain or Mangrove Gain
- Stable N. R. Forest
- Stable Mangrove
- Stable Non-Forest
- Level 2
- Loss to Aquaculture
- Loss to Rice fields
- Loss to Oil Palm plantations
- Loss to Direct Settlement (Urbanisation and infrastructure)
- Loss to Indirect settlement (salinisation, wetland drying)
- Loss to Charcoal and fuel wood extraction
- Loss to Natural disasters
- Loss to Natural retraction
- Loss to Others
- Gain—Natural expansion
- Gain—Restoration
References
- Leal, M.; Spalding, M.D. (Eds.) The State of the World’s Mangroves; Global Mangrove Alliance: Washington, DC, USA, 2022. [Google Scholar]
- Goldberg, L.; Lagomasino, D.; Thomas, N.; Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 2020, 26, 5844–5855. [Google Scholar] [CrossRef] [PubMed]
- Taillardat, P.; Friess, D.A.; Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol Lett. 2018, 14, 20180251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romañach, S.; Deangelis, D.; Koh, H.; Li, Y.; Teh, S.; Sulaiman, R.; Lu, Z. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean. Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Hagger, V.; Worthington, T.A.; Lovelock, C.E.; Adame, M.F.; Amano, T.; Brown, M.B.; Friess, D.A.; Landis, E.; Mumby, P.J.; Morrison, T.H.; et al. Drivers of global mangrove loss and gain in social-ecological systems. Nat. Commun. 2022, 13, 6373. [Google Scholar] [CrossRef]
- Giri, C.E.; Ochieng, L.; Tieszen, L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.; Rebelo, L.-M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, M. The Global Mangrove Watch—A New 2010 Global Baseline of Mangrove Extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Bunting, P.; Rosenqvist, A.; Hilarides, L.; Lucas, R.M.; Thomas, N.; Tadono, T.; Worthington, T.A.; Spaldingg, M.; Murray, N.J.; Rebelo, L.M. Global mangrove extent change 1996–2020: Global Mangrove Watch version 3.0. Remote Sens. 2022, 14, 3657. [Google Scholar] [CrossRef]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Murray, N.; Worthington, T.A.; Bunting, P.; Duce, S.; Hagger, V.; Lovelock, C.E.; Lucas, R.; Saunders, M.I.; Sheaves, M.; Spalding, M.; et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 2022, 376, 744–749. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [Green Version]
- Saah, D.; Johnson, G.; Ashmall, B.; Tondapu, G.; Tenneson, K.; Patterson, M.; Poortinga, A.; Markert, K.; Quyen, N.H.; San Aung, K.; et al. Collect Earth: An online tool for systematic reference data collection in land cover and use applications. Environ. Model. Softw. 2019, 118, 166–171. [Google Scholar] [CrossRef]
- FAO. The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO: Rome, Italy, 2007. [Google Scholar]
- Tomlinson, P.B. The Botany of Mangroves; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Baloloy, A.B.; Blanco, A.C.; Rhommel, R.; Ana, C.S.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- Vancutsem, C.; Achard, F.; Pekel, J.-F.; Vieilledent, G.; Carboni, S.; Simonetti, D.; Gallego, J.; Aragão, L.E.O.C.; Nasi, R. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 2021, 7, eabe1603. [Google Scholar] [CrossRef]
- FAO. FRA 2020 Remote Sensing Survey; FAO Forestry Paper No. 186; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Microsoft Corporation. Microsoft Excel. Available online: https://office.microsoft.com/excel (accessed on 30 July 2023).
- FAO. Terms and Definitions-FRA 2020; Forest Resources Assessment Working Paper 188; FAO: Rome, Italy, 2018; Available online: www.fao.org/3/I8661EN/i8661en.pdf (accessed on 1 August 2023).
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Feka, N.Z.; Ajonina, G.N. Drivers causing decline of mangrove in West-Central Africa: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2011, 7, 217–230. [Google Scholar] [CrossRef]
- FAO. The World’s Mangroves 2000–2020; Forest Resources Assessment Working Paper; FAO: Rome, Italy, 2023; in press. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100. 2021. Available online: https://zenodo.org/record/5571936 (accessed on 1 August 2023).
- Gerona-Daga, M.E.B.; Salmo, S.G., III. A systematic review of mangrove restoration studies in Southeast Asia: Challenges and opportunities for the United Nation’s Decade on Ecosystem Restoration. Front. Mar. Sci. 2022, 9, 987737. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- de Lacerda, L.D.; Borges, R.; Ferreira, A.C. Neotropical mangroves: Conservation and sustainable use in a scenario of global climate change. Aquatic Conserv Mar Freshw Ecosyst. 2019, 29, 1347–1364. [Google Scholar] [CrossRef]
- Duguma, L.; Bah, A.; Muthee, K.; Carsan, S.; McMullin, S.; Minang, P. Drivers and Threats Affecting Mangrove Forest Dynamics in Ghana and The Gambia. In Women Shellfishers and Food Security Project; WSFS2022_01_CRC; World Agroforestry (ICRAF): Nairobi, Kenya; Coastal Resources Center, Graduate School of Oceanography, University of Rhode Island: Narragansett, RI, USA, 2022; 53p. [Google Scholar]
- Lontsi, F.R.Z.; Tchawa, P.; Mbaha, J.P. Mapping and Botanical Study of Pressures Causing Mangrove Dynamics of Tiko (Southwest Cameroon). Open Access Libr. J. 2023, 10, 1–19. [Google Scholar] [CrossRef]
- CMEP. Caribbean Marine Climate Change Report Card 2017; Buckley, P., Townhill, B., Trotz, U., Nichols, K., Murray, P.A., Samuels, C.C., Gordon, A., Eds.; Commonwealth Marine Economies Programme (CMEP): London, UK, 2017; 12p. [Google Scholar]
- Alongi, D.M. The impact of climate change on mangrove forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Coldren, G.A.; Langley, J.A.; Feller, I.C.; Chapman, S.K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 2019, 107, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Friess, D.A.; Adame, M.F.; Adams, J.B.; Lovelock, C.E. Mangrove forests under climate change in a 2 C world. Wiley Interdiscip. Rev. Clim. Change 2022, 13, 792. [Google Scholar] [CrossRef]
- Arnaud, M.; Baird, A.J.; Morris, P.J.; Dang, T.H.; Nguyen, T.T. Sensitivity of mangrove soil organic matter decay to warming and sea level change. Glob. Chang. Biol. 2020, 26, 1899–1907. [Google Scholar] [CrossRef]
- Bindiya, E.S.; Sreekanth, P.M.; Bhat, S.G. Conservation and Management of Mangrove Ecosystem in Diverse Perspectives. In Conservation and Sustainable Utilization of Bioresources; Springer Nature: Singapore, 2023; pp. 323–352. [Google Scholar]
- Fickert, T. To plant or not to plant, that is the question: Reforestation vs. natural regeneration of hurricane-disturbed mangrove forests in Guanaja (Honduras). Forests 2020, 11, 1068. [Google Scholar] [CrossRef]
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Kindgard, A.; FAO, Rome, Italy. Personal Communication, 2023.
- FAO. Regional Technical Platform on Green Agriculture. Available online: https://www.fao.org/platforms/green-agriculture/areas-of-work/natural-resources-biodiversity-green-production/forestry/forest-and-land-use-cover-assessment-and-monitoring/en (accessed on 31 May 2023).
- Sandker, M.; Carrillo, O.; Leng, C.; Lee, D.; d’Annunzio, R.; Fox, J. The importance of high–quality data for REDD+ monitoring and reporting. Forests 2021, 12, 99. [Google Scholar] [CrossRef]
- Bhowmik, A.K.; Padmanaban, R.; Cabral, P.; Romeiras, M.M. Global Mangrove Deforestation and Its Interacting Social-Ecological Drivers: A Systematic Review and Synthesis. Sustainability 2022, 14, 4433. [Google Scholar] [CrossRef]
Subregion | Mangrove Area (km2) | ± (km2) | ± (%) |
---|---|---|---|
North and Central America | 18,455 | 821 | 4.4% |
South America | 21,400 | 727 | 3.4% |
Western and Central Africa | 20,926 | 795 | 3.8% |
Eastern and Southern Africa | 7264 | 493 | 6.8% |
Western and Central Asia | 209 | 95 | 45.6% |
East Asia | 150 | 52 | 34.7% |
South and Southeast Asia | 64,755 | 1313 | 2.0% |
Oceania | 14,611 | 703 | 4.8% |
World Total | 147,771 | 2075 | 1.4% |
Subregion | JRC (2021, km2) | ESA (2020, km2) | GMW 3.0 (2020, km2) | This Paper (2020, km2) |
---|---|---|---|---|
East Asia | 2 | 247 | 228 | 150 |
Eastern and Southern Africa | 4189 | 9155 | 7917 | 7264 |
North and Central America | 14,432 | 27,961 | 22,827 | 18,455 |
Oceania | 11,900 | 20,920 | 16,518 | 14,611 |
South America | 19,538 | 23,966 | 20,378 | 21,400 |
South and Southeast Asia | 52,504 | 74,009 | 57,772 | 64,755 |
Western and Central Africa | 19,849 | 25,004 | 21,428 | 20,926 |
Western and Central Asia | 0 | 379 | 285 | 209 |
Total | 122,414 | 181,639 | 147,352 | 147,771 |
Study | Period | Loss in Period (km2) | Annual Loss (km2) | Gain (km2) | Annual Gain (km2) | ||||
---|---|---|---|---|---|---|---|---|---|
Est. | Lower CI | Upper CI | Est. | Lower CI | Upper CI | ||||
Hamilton and Casey 2016 [23] | 2000–2012 | 1646 | NA | NA | −137 | NA | NA | NA | NA |
Goldberg et al. 2020 [2] | 2000–2016 | −3363 | NA | NA | −210 | NA | NA | NA | NA |
Murray et al. 2022 [10] | 1999–2019 | −5561 | −6827 | −3326 | −278 | 1828 | 932 | 2960 | 91 |
GMW v3.0 [8] | 1996–2020 | −9348 | −15,825 | −5568 | −390 | 4130 | 2238 | 7012 | 171 |
FRA Mangrove RSS (This Study) | 2000–2020 | −6314 | −6923 | −5706 | −316 | 3475 | 3093 | 3857 | 174 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contessa, V.; Dyson, K.; Vivar Mulas, P.P.; Kindgard, A.; Liu, T.; Saah, D.; Tenneson, K.; Pekkarinen, A. Uncovering Dynamics of Global Mangrove Gains and Losses. Remote Sens. 2023, 15, 3872. https://doi.org/10.3390/rs15153872
Contessa V, Dyson K, Vivar Mulas PP, Kindgard A, Liu T, Saah D, Tenneson K, Pekkarinen A. Uncovering Dynamics of Global Mangrove Gains and Losses. Remote Sensing. 2023; 15(15):3872. https://doi.org/10.3390/rs15153872
Chicago/Turabian StyleContessa, Valeria, Karen Dyson, Pedro Pablo Vivar Mulas, Adolfo Kindgard, Tianchi Liu, David Saah, Karis Tenneson, and Anssi Pekkarinen. 2023. "Uncovering Dynamics of Global Mangrove Gains and Losses" Remote Sensing 15, no. 15: 3872. https://doi.org/10.3390/rs15153872