Investigating the Storm Surge and Flooding in Shenzhen City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Remote-Sensed Significant Wave Height
2.2. Typhoon Data
2.3. Tide Station Data
2.4. Numerical Modeling
2.5. Model Skill Assessment
3. Results
3.1. Tropical Cyclones Affecting Shenzhen
3.2. Validation of Wave Simulation
3.3. Validation of Tide Simulation
3.4. Validation of Surge Simulation
3.5. Storm Surge along Shenzhen Coast
3.6. Flooding along the Shenzhen Coast
4. Discussion
4.1. Occurrence Time of Maximum Surge and Flooding
4.2. Role of Topography
4.3. Role of Wave–Current Interaction and River Discharge
5. Conclusions
- (1)
- Classification of historical tropical cyclones reveals that Shenzhen city is most vulnerable to cyclones propagating from the southeast toward the northwest and passing Shenzhen down the Pearl River Estuary (i.e., type SE-NW-DOWN);
- (2)
- Propagation of far-field surge and tidal waves, cooperation between wind direction and coastline orientation, estuary morphology, and land terrain together dominate the spatiotemporal distribution and intensity of storm surge and flooding in Shenzhen;
- (3)
- We highlight the importance of wave–current interaction and river discharge in the forecast of storm surge and flooding in Shenzhen: wave–current interaction improves the simulation of storm surge and may modify the occurrence time of maximum surge height, while river discharge can elevate the background SLH, particularly in the inner estuary.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritz, H.M.; Blount, C.; Sokoloski, R.; Singleton, J.; Fuggle, A.; McAdoo, B.G.; Moore, A.; Grass, C.; Tate, B. Hurricane Katrina Storm Surge Distribution and Field Observations on the Mississippi Barrier Islands. Estuar. Coast. Shelf Sci. 2007, 74, 12–20. [Google Scholar] [CrossRef]
- Needham, H.F.; Keim, B.D.; Sathiaraj, D. A Review of Tropical Cyclone-generated Storm Surges: Global Data Sources, Observations, and Impacts. Rev. Geophys. 2015, 53, 545–591. [Google Scholar] [CrossRef]
- Lowe, J.A.; Gregory, J.M.; Flather, R.A. Changes in the Occurrence of Storm Surges around the United Kingdom under a Future Climate Scenario Using a Dynamic Storm Surge Model Driven by the Hadley Centre Climate Models. Clim. Dyn. 2001, 18, 179–188. [Google Scholar] [CrossRef]
- Horsburgh, K.J.; Wilson, C. Tide-Surge Interaction and Its Role in the Distribution of Surge Residuals in the North Sea. J. Geophys. Res. 2007, 112, C08003. [Google Scholar] [CrossRef]
- Olbert, A.I.; Hartnett, M. Storms and Surges in Irish Coastal Waters. Ocean Model. 2010, 34, 50–62. [Google Scholar] [CrossRef]
- Haigh, I.D.; MacPherson, L.R.; Mason, M.S.; Wijeratne, E.M.S.; Pattiaratchi, C.B.; Crompton, R.P.; George, S. Estimating Present Day Extreme Water Level Exceedance Probabilities around the Coastline of Australia: Tropical Cyclone-Induced Storm Surges. Clim. Dyn. 2014, 42, 139–157. [Google Scholar] [CrossRef]
- Pasquali, D.; Di Risio, M.; De Girolamo, P. A Simplified Real Time Method to Forecast Semi-Enclosed Basins Storm Surge. Estuar. Coast. Shelf Sci. 2015, 165, 61–69. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Zhang, L.; Shen, Y. Computational investigation of typhoon-induced storm surge in Hangzhou Bay, China. Estuar. Coast. Shelf Sci. 2009, 85, 530–536. [Google Scholar] [CrossRef]
- Jones, J.E.; Davies, A.M. Storm Surge Computations for the Irish Sea Using a Three-Dimensional Numerical Model Including Wave–Current Interaction. Cont. Shelf Res. 1998, 18, 201–251. [Google Scholar] [CrossRef]
- Dietrich, J.C.; Bunya, S.; Westerink, J.J.; Ebersole, B.A.; Smith, J.; Atkinson, J.H.; Jensen, R.E.; Resio, D.T.; Luettich, R.A.; Dawson, C.; et al. A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita. Mon. Weather Rev. 2010, 138, 378–404. [Google Scholar] [CrossRef]
- Beardsley, R.C.; Chen, C.; Xu, Q. Coastal Flooding in Scituate (MA): A FVCOM Study of the 27 December 2010 nor’easter. J. Geophys. Res. Oceans 2013, 118, 6030–6045. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Liu, H.; Xu, H.; Shen, J. Comparison of Three Methods for Estimating the Sea Level Rise Effect on Storm Surge Flooding. Clim. Change 2013, 118, 487–500. [Google Scholar] [CrossRef]
- Soontiens, N.; Allen, S.E.; Latornell, D.; Le Souëf, K.; Machuca, I.; Paquin, J.-P.; Lu, Y.; Thompson, K.; Korabel, V. Storm Surges in the Strait of Georgia Simulated with a Regional Model. Atmos. Ocean 2016, 54, 1–21. [Google Scholar] [CrossRef]
- Shen, J.; Gong, W. Influence of Model Domain Size, Wind Directions and Ekman Transport on Storm Surge Development inside the Chesapeake Bay: A Case Study of Extratropical Cyclone Ernesto, 2006. J. Mar. Syst. 2009, 75, 198–215. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S.; Stewart, R.W. Radiation Stress and Mass Transport in Gravity Waves, with Application to ‘surf-Beats’. J. Fluid. Mech. 1962, 13, 481–504. [Google Scholar] [CrossRef]
- Marsooli, R.; Lin, N. Numerical Modeling of Historical Storm Tides and Waves and Their Interactions Along the U.S. East and Gulf Coasts. J. Geophys. Res. Oceans 2018, 123, 3844–3874. [Google Scholar] [CrossRef]
- Zhang, C.; Hou, Y.; Li, J. Wave-current interaction during Typhoon Nuri (2008) and Hagupit (2008):an application of the coupled ocean-wave modeling system in the northern South China Sea. J. Oceanol. Limnol. 2018, 36, 663–675. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yasuda, T.; Mase, H. Wave Set-up in the Storm Surge along Open Coasts during Typhoon Anita. Coast. Eng. 2010, 57, 631–642. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, W.; Bian, C. Numerieal Prediction of Storm Surge in the Qingdao Area Under the Impact of Climate Change. J. Ocean Univ. China 2014, 13, 539–551. [Google Scholar] [CrossRef]
- Chen, J. The Impact of Sea Level Rise on China’s Coastal Areas and Its Disaster Hazard Evaluation. J. Coast. Res. 1997, 13, 925–930. [Google Scholar]
- Rahmstorf, S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science 2007, 315, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Vermeer, M.; Rahmstorf, S. Global Sea Level Linked to Global Temperature. Proc. Natl. Acad. Sci. USA 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [PubMed]
- Katsman, C.A.; Sterl, A.; Beersma, J.J.; van den Brink, H.W.; Church, J.A.; Hazeleger, W.; Kopp, R.E.; Kroon, D.; Kwadijk, J.; Lammersen, R.; et al. Exploring High-End Scenarios for Local Sea Level Rise to Develop Flood Protection Strategies for a Low-Lying Delta—The Netherlands as an Example. Clim. Change 2011, 109, 617–645. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, W.; Yang, B.; Baugh, J. Numerical Study on Factors Influencing Typhoon-Induced Storm Surge Distribution in Zhanjiang Harbor. Estuar. Coast. Shelf Sci. 2018, 215, 39–51. [Google Scholar] [CrossRef]
- Ye, R.; Ge, J.; Zhang, W.; Zhao, H. Statistical analysis on impact from tropical cyclone on Guangdong-Hong Kong-Macao Greater Bay Area. Water Resour. Hydropower Eng. 2020, 51, 37–43. (In Chinese) [Google Scholar]
- Yang, J.; Jiang, S.; Wu, J.; Xie, L.; Zhang, S.; Bai, P. Effects of Wave-Current Interaction on the Waves, Cold-Water Mass and Transport of Diluted Water in the Beibu Gulf. Acta Oceanol. Sin. 2020, 39, 25–40. [Google Scholar] [CrossRef]
- Yao, R.; Shao, W.; Hao, M.; Zuo, J.; Hu, S. The Respondence of Wave on Sea Surface Temperature in the Context of Global Change. Remote Sens. 2023, 15, 1948. [Google Scholar] [CrossRef]
- Li, R.; Wu, K.; Zhang, W.; Dong, X.; Lv, L.; Li, S.; Liu, J.; Babanin, A.V. Analysis of the 20-Year Variability of Ocean Wave Hazards in the Northwest Pacific. Remote Sens. 2023, 15, 2768. [Google Scholar] [CrossRef]
- Jiang, Y.; Rong, Z.; Li, Y.; Li, C.; Meng, X. Toward a High-Resolution Wave Forecasting System for the Changjiang River Estuary. Remote Sens. 2023, 15, 3581. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ye, F.; Stanev, E.V.; Grashorn, S. Seamless Cross-Scale Modeling with SCHISM. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Ateljevich, E.; Yu, H.-C.; Wu, C.H.; Yu, J.C.S. A New Vertical Coordinate System for a 3D Unstructured-Grid Model. Ocean Model. 2015, 85, 16–31. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Warner, J.C.; Geyer, W.R.; Lerczak, J.A. Numerical Modeling of an Estuary: A Comprehensive Skill Assessment. J. Geophys. Res. 2005, 110, C05001. [Google Scholar] [CrossRef]
- Zhong, L.; Li, M. Tidal Energy Fluxes and Dissipation in the Chesapeake Bay. Cont. Shelf Res. 2006, 26, 752–770. [Google Scholar] [CrossRef]
- Pan, J.; Gu, Y.; Wang, D. Observations and Numerical Modeling of the Pearl River Plume in Summer Season. J. Geophys. Res. Oceans 2014, 119, 2480–2500. [Google Scholar] [CrossRef]
- Bai, P.; Gu, Y.; Li, P.; Wu, K. Tidal Energy Budget in the Zhujiang (Pearl River) Estuary. Acta Oceanol. Sin. 2016, 35, 54–65. [Google Scholar] [CrossRef]
- Ye, F.; Zhang, Y.J.; Yu, H.; Sun, W.; Moghimi, S.; Myers, E.; Nunez, K.; Zhang, R.; Wang, H.V.; Roland, A.; et al. Simulating Storm Surge and Compound Flooding Events with a Creek-to-Ocean Model: Importance of Baroclinic Effects. Ocean Model. 2020, 145, 101526. [Google Scholar] [CrossRef]
- Huang, W.; Ye, F.; Zhang, Y.J.; Park, K.; Du, J.; Moghimi, S.; Myers, E.; Pe’eri, S.; Calzada, J.R.; Yu, H.C.; et al. Compounding Factors for Extreme Flooding around Galveston Bay during Hurricane Harvey. Ocean Model. 2021, 158, 101735. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the Regional Pattern of Projected Future Changes in Extreme Precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
Configuration Case Name | Barotropic | Uncoupled | Coupled | Coupled + River |
---|---|---|---|---|
Initial condition | Motionless; constant temperature and salinity | CMEMS | CMEMS | CMEMS |
Boundary condition | N/A | CMEMS | CMEMS | CMEMS |
Tidal forcing | FES2014 | FES2014 | FES2014 | FES2014 |
Air–sea fluxes | N/A | CFSv2 | CFSv2 | CFSv2 |
Wave–current interaction | N/A | Off | On | On |
Pearl River discharge | N/A | Off | Off | On |
Modeling period | 20140301–20140430 | 20170701–20170831 | 20170701–20170831 | 20170701–20170831 |
Station Case | Observation | Uncoupled | Coupled | Coupled + River |
---|---|---|---|---|
T10 | 3.40 | 3.34 (0.06) | 3.39 (0.01) | 3.39 (0.01) |
T11 | 3.89 | 3.82 (0.07) | 3.83 (0.06) | 3.83 (0.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, P.; Wu, L.; Chen, Z.; Xu, J.; Li, B.; Li, P. Investigating the Storm Surge and Flooding in Shenzhen City, China. Remote Sens. 2023, 15, 5002. https://doi.org/10.3390/rs15205002
Bai P, Wu L, Chen Z, Xu J, Li B, Li P. Investigating the Storm Surge and Flooding in Shenzhen City, China. Remote Sensing. 2023; 15(20):5002. https://doi.org/10.3390/rs15205002
Chicago/Turabian StyleBai, Peng, Liangchao Wu, Zhoujie Chen, Jianjun Xu, Bo Li, and Peiliang Li. 2023. "Investigating the Storm Surge and Flooding in Shenzhen City, China" Remote Sensing 15, no. 20: 5002. https://doi.org/10.3390/rs15205002