Experimental Results of Underwater Sound Speed Profile Inversion by Few-Shot Multi-Task Learning
Abstract
:1. Introduction
- To achieve good accuracy performance of SSP inversion with insufficient training data, we propose the MTL approach. Through learning on multiple tasks (different kinds of SSPs), common features of SSPs are extracted to shorten the training process of the model on any given task, so as to enhance the generalization ability.
- To verify the feasibility of MTL, a deep-ocean experiment was conducted. The accuracy performance of SSP inversion is evaluated based on measured data and is compared with other mainstream approaches.
2. MTL Model for SSP Inversion
2.1. Label SSP Data Preparation
2.2. Simulation of Signal Propagation Times
2.3. Training of the Multi-Task Learner
3. Deep-Ocean Experiments
4. Results and Discussions
4.1. Pre-Processing of SSP Data
4.2. Performance of MTL
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erol-Kantarci, M.; Mouftah, H.T.; Oktug, S. A survey of architectures and localization techniques for underwater acoustic sensor networks. IEEE Commun. Surv. Tutor. 2011, 13, 487–502. [Google Scholar] [CrossRef]
- Fengzhong, Q.; Shiyuan, W.; Zhihui, W.; Zubin, L. A survey of ranging algorithms and localization schemes in underwater acoustic sensor network. China Commun. 2016, 13, 66–81. [Google Scholar] [CrossRef]
- Luo, J.; Yang, Y.; Wang, Z.; Chen, Y. Localization Algorithm for Underwater Sensor Network: A Review. IEEE Internet Things J. 2021, 8, 13126–13144. [Google Scholar] [CrossRef]
- Jensen, F.B.; Kuperman, W.A.; Porter, M.B.; Schmidt, H. Computational Ocean Acoustics: Chapter 1; Springer Science & Business Media: New York, NY, USA, 2011; pp. 3–4. [Google Scholar]
- Munk, W.; Wunsch, C. Ocean acoustic tomography: A scheme for large scale monitoring. Deep Sea Res. Part A Oceanogr. Res. Pap. 1979, 26, 123–161. [Google Scholar] [CrossRef]
- Munk, W.; Wunsch, C. Ocean acoustic tomography: Rays and modes. Rev. Geophys. 1983, 21, 777–793. [Google Scholar] [CrossRef]
- Shang, E. Ocean acoustic tomography based on adiabatic mode theory. J. Acoust. Soc. Am. 1989, 85, 1531–1537. [Google Scholar] [CrossRef]
- Carroll, P.; Mahmood, K.; Zhou, S.; Zhou, H.; Xu, X.; Cui, J.H. On-demand asynchronous localization for underwater sensor networks. IEEE Trans. Signal Process. 2014, 62, 3337–3348. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Z.; Cui, J.H.; Zhou, S.; Yang, B. A joint time synchronization and localization design for mobile underwater sensor networks. IEEE Trans. Mob. Comput. 2015, 15, 530–543. [Google Scholar] [CrossRef]
- Wu, Q.; Xu, W. Matched field source localization as a multiple hypothesis tracking problem. In Proceedings of the International Conference on Underwater Networks & Systems (WUWNet’17), New York, NY, USA, 6–8 November 2017; Number 25. pp. 1–2. [Google Scholar]
- Zhang, M.; Xu, W.; Xu, Y. Inversion of the sound speed with radiated noise of an autonomous underwater vehicle in shallow water waveguides. IEEE J. Ocean. Eng. 2015, 41, 204–216. [Google Scholar] [CrossRef]
- Huang, W.; Li, D.; Jiang, P. Underwater Sound Speed Inversion by Joint Artificial Neural Network and Ray Theory. In Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems (WUWNet’18), Shenzhen, China, 3–5 December 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Rice, J.; Creber, B.; Fletcher, C.; Baxley, P.; Rogers, K.; McDonald, K.; Rees, D.; Wolf, M.; Merriam, S.; Mehio, R.; et al. Evolution of Seaweb underwater acoustic networking. In Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Conference Proceedings (Cat. No.00CH37158). Providence, RI, USA, 11–14 September 2000; Volume 3, pp. 2007–2017. [Google Scholar] [CrossRef]
- Tolstoy, A.; Diachok, O.; Frazer, L. Acoustic tomography via matched field processing. J. Acoust. Soc. Am. 1991, 89, 1119–1127. [Google Scholar] [CrossRef]
- Choo, Y.; Seong, W. Compressive sound speed profile inversion using beamforming results. Remote Sens. 2018, 10, 704. [Google Scholar] [CrossRef]
- Li, Q.; Shi, J.; Zhenglin, L.; Yu, L.; Zhang, K. Acoustic sound speed profile inversion based on orthogonal matching pursuit. Acta Oceanol. Sin. 2019, 38, 149–157. [Google Scholar] [CrossRef]
- Stephan, Y.; Thiria, S.; Badran, F. Inverting tomographic data with neural nets. In Proceedings of the ‘Challenges of Our Changing Global Environment’, Conference Proceedings, OCEANS’95 MTS/IEEE. San Diego, CA, USA, 9–12 October 1995; Volume 3, pp. 1501–1504. [Google Scholar] [CrossRef]
- Zhang, Z.M. The Study for Sound Speed Inversion in Shallow Water on Application of Genetic and Simulated Annealing Algorithms. Master’s Thesis, Harbin Engineering University, Harbin, China, 2005. Chapter 4. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, S.-e.; Huang, Y.-w.; Li, L. Inversion of sound speed profile in shallow water with irregular seabed. In Proceedings of the Advances in Ocean Acoustics: Proceedings of the 3rd International Conference on Ocean Acoustics (OA2012), Beijing, China, 21–25 May 2012; Volume 1495, pp. 392–399. [Google Scholar] [CrossRef]
- Zheng, G.Y.; Huang, Y.W. Improved Perturbation Method for Sound Speed Profile Inversion. J. Harbin Eng. Univ. 2017, 38, 371–377. (In Chinese) [Google Scholar] [CrossRef]
- Tang, J.F.; Yang, S.E. Sound speed profile in ocean inverted by using travel time. J. Harbin Eng. Univ. 2006, 27, 733–737. (In Chinese) [Google Scholar] [CrossRef]
- Sun, W.C.; Bao, J.Y.; Jin, S.H.; Xiao, F.M.; Cui, Y. Inversion of Sound Velocity Profiles by Correcting the Terrain Distortion. Geomat. Inf. Sci. Wuhan Univ. 2016, 41, 349–355. [Google Scholar] [CrossRef]
- Bianco, M.J.; Gerstoft, P.; Traer, J.; Ozanich, E.; Roch, M.A.; Gannot, S.; Deledalle, C.A. Machine learning in acoustics: Theory and applications. J. Acoust. Soc. Am. 2019, 146, 3590–3628. [Google Scholar] [CrossRef] [PubMed]
- Michalopoulou, Z.H.; Alexandrou, D.; De Moustier, C. Application of neural and statistical classifiers to the problem of seafloor characterization. IEEE J. Ocean. Eng. 1993, 20, 190–197. [Google Scholar] [CrossRef]
- Komen, D.F.V.; Neilsen, T.B.; Howarth, K.; Knobles, D.P.; Dahl, P.H. Seabed and range estimation of impulsive time series using a convolutional neural network. J. Acoust. Soc. Am. 2020, 147, 403–408. [Google Scholar] [CrossRef]
- Huang, W.; Liu, M.; Li, D.; Yin, F.; Chen, H.; Zhou, J.; Xu, H. Collaborating Ray Tracing and AI Model for AUV-Assisted 3-D Underwater Sound-Speed Inversion. IEEE J. Ocean. Eng. 2021, 46, 1372–1390. [Google Scholar] [CrossRef]
- Vanschoren, J. Meta-Learning: A Survey. arXiv 2018, arXiv:1810.03548v1. [Google Scholar] [CrossRef]
- Hospedales, T.; Antoniou, A.; Micaelli, P.; Storkey, A. Meta-Learning in Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 5149–5169. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Jin, G.; Liu, F.; Wu, K.; Chen, C. Deep Learning-based framework for expansion, recognition and classification of underwater acoustic signal. J. Exp. Theor. Artif. Intell. 2020, 32, 205–218. [Google Scholar] [CrossRef]
- Rich, C. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Yang, Y.; Hospedales, T.M. Deep Multi-task Representation Learning: A Tensor Factorisation Approach. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Finn, C.; Abbeel, P.; Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In Proceedings of the 34th International Conference on Machine Learning (ICML’17), Sydney, Australia, 6–11 August 2017; pp. 1126–1135. [Google Scholar]
- Huang, W.; Li, D.; Xu, T.; Gao, F. A Fast Estimation Method for Sound Velocity Distribution Based on Cross Spatiotemporal Sound Velocity Profile Clustering. CN Patent 202211243606.9, 3 February 2023. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back Propagating Errors. Nature 1986, 5, 533–536. [Google Scholar] [CrossRef]
- Huang, W.; Li, D.; Zhang, H.; Xu, T.; Yin, F. A meta-deep-learning framework for spatio-temporal underwater SSP inversion. Front. Mar. Sci. 2023, 10, 1321121. [Google Scholar] [CrossRef]
- Li, X.; Zhang, D.; Sun, D.; Zheng, C.E. Implementation of high-precision ultra short baseline positioning system. Comput. Eng. Appl. 2007, 43, 176–178. [Google Scholar]
- Li, Z.; Zheng, C.E.; Sun, D. Track design for the acoustic sensor installation alighment calibration in ultra-short base line positioning system. Syst. Eng. Electron. 2016, 38, 1010–1016. [Google Scholar]
- Scientific, S.B. SBE 911plus CTD. 2023. Available online: https://www.seabird.com/sbe-911plus-ctd/product?id=60761421595 (accessed on 1 November 2023).
- Electronics, H. HYLMT-XCTD. 2023. Available online: http://www.haiyanec.com/hlgcsb/358 (accessed on 1 November 2023).
- Huang, W.; Lu, J.; Li, S.; Xu, T.; Wang, J.; Zhang, H. Fast Estimation of Full Depth Sound Speed Profile based on Partial Prior Information. In Proceedings of the IEEE International Conference on Electronic Information and Communication Technology, Qingdao, China, 21–24 July 2023; pp. 1–6. [Google Scholar]
- Boyer, T.; Baranova, O.; Coleman, C.; Garcia, H.; Grodsky, A.; Locarnini, R.A.; Mishonov, A.; Paver, C.; Reagan, J.; Seidov, D.; et al. World Ocean Database. 2018. Available online: https://www.ncei.noaa.gov/access/world-ocean-database/datawodgeo.html (accessed on 1 November 2023).
Training SSP clusters | 10 |
SSP Clusters per epoch K | 3 |
SSPs for multi-task learner training (per cluster) | 10 |
Multi-task learner training epochs * | 20 |
Task learner training epochs | 20 |
Task training SSPs per epoch | 5 |
Maximum SSP depth | 3500 m |
Points of simplified SSPs | 50 |
Learning rate | 0.000002 |
Task learning rate | 0.01 |
Input layer neurons | 120 |
Hidden layer neurons | 300 |
Output layer neurons | 50 |
Factor for task classification | 0.02 |
Factor for learning rate adjustment | 0.9 |
Methods | SIP (m/s) | EOF-MFP (m/s) | FNN (m/s) | MTL (m/s) |
---|---|---|---|---|
Average RMSE | 0.3895 | 0.3341 | 0.2653 | 0.2007 |
0–200 (m) | 0.6875 | 0.5578 | 0.3366 | 0.2077 |
200–800 (m) | 0.7529 | 0.6675 | 0.2086 | 0.1394 |
800–1300 (m) | 0.4144 | 0.3743 | 0.3232 | 0.2801 |
1300–3500 (m) | 0.0694 | 0.0617 | 0.2567 | 0.1917 |
Noise Coefficient | 0 | 0.001 | 0.002 | 0.005 | 0.01 | 0.05 | 0.1 |
RMSE (m/s) | 0.2007 | 0.2031 | 0.2117 | 0.2233 | 0.2338 | 0.2494 | 0.2725 |
ratio | 1.000 | 1.012 | 1.055 | 1.113 | 1.165 | 1.243 | 1.358 |
Methods | SIP | EOF-MFP | FNN | MTL |
---|---|---|---|---|
Inversion stage (s) | 0.0033 | 38.1980 | 0.0005 | 0.0008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Zhou, J.; Gao, F.; Wang, J.; Xu, T. Experimental Results of Underwater Sound Speed Profile Inversion by Few-Shot Multi-Task Learning. Remote Sens. 2024, 16, 167. https://doi.org/10.3390/rs16010167
Huang W, Zhou J, Gao F, Wang J, Xu T. Experimental Results of Underwater Sound Speed Profile Inversion by Few-Shot Multi-Task Learning. Remote Sensing. 2024; 16(1):167. https://doi.org/10.3390/rs16010167
Chicago/Turabian StyleHuang, Wei, Jixuan Zhou, Fan Gao, Junting Wang, and Tianhe Xu. 2024. "Experimental Results of Underwater Sound Speed Profile Inversion by Few-Shot Multi-Task Learning" Remote Sensing 16, no. 1: 167. https://doi.org/10.3390/rs16010167