Advances in Deep Learning Recognition of Landslides Based on Remote Sensing Images
Abstract
:1. Introduction
2. Fundamentals of Deep Learning to Recognize Landslides
2.1. Targeted Detection
2.2. Semantic Segmentation
2.3. Landslide Remote Sensing Databases
- (1)
- Bijie Landslide Dataset
- (2)
- HR-GLDD dataset
- (3)
- CAS Landslide Dataset
3. Typical Deep Learning Models for Landslide Recognition
3.1. Recurrent Neural Networks (RNN)
3.2. Convolutional Neural Network (CNN)
3.3. AlexNet
3.4. Mask R-CNN
3.5. U-Net
3.6. ResNet
3.7. PSPNet
3.8. YOLO
3.9. Transformer
3.10. DeeplabV3+
3.11. EfficientNet
4. Shortcomings and Prospects
4.1. Shortcomings
- (1)
- A large amount of training data is required. Deep learning methods need to be driven by huge amounts of data to realize feature learning. It is very difficult to construct a huge dataset of slippery slope samples. The amount of landslide data has an important impact on the final classification results. For fully convolutional networks, a large amount of landslide sample data is required when training the model [129]. When the amount of landslide sample data is insufficient, the model will be overfitted. In order to avoid overfitting, researchers have chosen many remote sensing images under different conditions (cropping, flipping, scaling, etc.) to solve this problem, but the collected data still have some limitations, such as large sizes and small amounts, both in the prescribed scenarios as well as the scarcity of historical landslide sites themselves [94]. However, in this study, the determination of insufficient sample size is related to the selected study area, and the appropriate sample size was selected based on the actual scenario. Zhang et al. [71] selected 770 landslide images as training samples from the Bijie City landslide dataset, and due to the insufficient number of these samples, data enhancement was used to expand them to 3280 landslide training sample images. After model training was completed, two areas in Beijing’s Yanqing and Fangshan districts were used as the test areas, and high accuracy was achieved in the test. However, in order to further improve the accuracy of the landslide identification, the U-Net model still needs to be improved in a subsequent study, and the number of training sets will be increased to optimize the model. Taking the Loess Plateau as the main study area, Shi et al. [130] selected 2870 landslides from the landslide dataset as the training sample set and used a single-level instance segmentation network (YOLACT) to recognize the loess landslides. Due to the small number of samples, the model training was difficult to optimize, and it was necessary to further expand the sample size in future work. In order to solve the problem of insufficient landslide sample data in model training, the direction and attitude of landslide distribution can be adjusted via the circular view function to obtain samples of the same landslide in different directions and different altitudes to expand and enhance the sample set; moreover, part of the remote sensing image data of the non-landslide in the training sample dataset can be randomly added in order to enhance the generalizability of the training model.
- (2)
- Concerning the influence of the terrain, in practice, most landslides are distributed in mountains; due to the effects of this terrain, it is difficult to obtain samples to solve the problem. Furthermore, the irregular distribution of landslide displacement monitoring points for the extraction of landslide information increases these difficulties [131]. Many landslides cannot be identified using remotely sensed images due to immature imaging technology and the influence of complex terrain features. Not only that, due to terrain and weather conditions, it is usually difficult to obtain real-time images of pre- and post-disaster landslides within a short period before the occurrence of a landslide, which can lead to a large time difference between pre- and post-disaster remotely sensed images and affect the accuracy of landslide detection [132]. To eliminate the influence of terrain factors on landslide identification as much as possible, Cai et al. designed a lightweight volumetric neural network with simple structural features. After simplifying the volumetric neural network to avoid performance degradation in terms of the model, the improved data allowed for the construction of a volumetric neural network model that can extract enough landslide information [133]. In a study conducted by Ju et al. [134] on recognizing landslides based on Mask R-CNN, due to the variability in terms of landslide morphology and the complexity of the natural environment, there were more misidentifications existing in the work, and finer landslide classification and identification is needed, which can be achieved via its combination with InSAR and LiDAR techniques to further improve the accuracy of landslide hazard identification.
- (3)
- Concerning vegetation cover, landslide disasters mostly occur in mountainous areas, and most mountainous areas are rich in vegetation. During the automatic identification of landslides, vegetation cover will be observed in the collected remote sensing landslide images. High vegetation density will lead to high costs and lower efficiency in terms of landslide identification and even result in omission and misidentification; therefore, vegetation removal operations should be added to data preprocessing, which can improve the accuracy of landslide identification. At present, the most effective and widely used method for vegetation removal is the point cloud filtering algorithm, which obtains the point cloud data of the landslide identification area through the three-dimensional laser scanner and then filters the obtained point cloud data to remove the ground vegetation. Considering that the topography of densely vegetated areas has diverse forms and causes irregularities in the collected point cloud data, Tao Ma’s research group [135] proposed a point cloud filtering algorithm based on windowing and slope, and the results of this algorithm showed that it can efficiently and accurately remove a large number of vegetation noise points on the ground and significantly improve the efficiency and accuracy of the point cloud filtering algorithm in densely vegetated areas. In future research, the comprehensive use of multisource remote sensing data such as synthetic aperture radar (SAR) imagery and optical imagery will be further investigated to establish a more accurate landslide identification model. At the same time, the interpretability of the deep learning model will also be investigated to reveal the bases for deep learning landslide identification models.
- (4)
- The model structure is too complex. Although deep learning can extract deeper features of landslides and improve recognition accuracy, the parameters become more and more numerous as the deep learning network model becomes more complex and deeper. Too many model parameters mean that more memory and time are consumed, and the results cannot be obtained quickly in emergencies, affecting the application of deep learning models for fast detection. Therefore, in the future, we need to explore more lightweight network models to realize the fast and accurate recognition of landslides. Fu et al. [136] designed the YOLOv4-MobileNetv3 landslide detection model by optimizing the structure on the basis of the YOLOv4 model, and the recognition accuracy of the improved YOLOv4 model reached 91.37%. Moreover, it improved the detection speed by 6.19 f/s (5.24%), and reduced the model parameter size by 80%. However, reducing the model parameters to improve the target detection speed while maintaining high accuracy is an urgent problem that needs to be solved.
4.2. Prospects
- (1)
- As the models used for landslide identification become more comprehensive and complex, the accuracy of identification is also increasing. The integration of multiple single models is the most prominent development trend in the use of deep learning models to identify landslides. Integrating a transformer into ResU-Net can enhance the network’s ability to model the global context of feature maps and generate an accurate regional landslide inventory and facilitate emergency rescue operations [123]. Hu et al. [137] replaced the transformer module in the original structure with the efficient transformer module, which effectively reduced the computational complexity of the model. Moreover, the flow alignment module (FAM) was introduced, which can simplify the operation process and effectively integrate the high-resolution information in the shallow layer. The accuracy of the FATransUNet model is higher than the other single models (FCN, U-Net, SegNet, DeepLabV3+, and TransUNet).
- (2)
- Multisource data with multiple ground resolutions and spectral resolutions are being used in deep learning landslide identification. Specifically, the use of high-resolution drone imagery has brought new vitality to this field [138,139]. Hyperspectral data have also begun to be used for deep learning landslide recognition [140].
- (3)
- The feature segmentation of remote sensing images is also an important development direction for improving the accuracy of landslide identification [141,142]. An approach to fuse both local and non-local features can outperform state-of-the-art general-purpose semantic segmentation approaches [8]. A feature-based constraint deep U-Net (FCDU-Net) method to detect rainfall-induced mountainous landslides can achieve better landslide detection results than the other semantic segmentation methods [143]. A feature-fusion-based semantic segmentation network (FFS-Net) can extract texture and shape features from 2-D HRSIs, and terrain features taken from DEM data can greatly improve the segmentation accuracy of old, visually blurred landslides [141].
- (4)
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, D.M. Research on Automatic Extraction Method of Landslide Boundary Based on Remote Sensing Image; Southwest Jiaotong University: Chengdu, China, 2013. [Google Scholar]
- NASA Landslide Viewer. Global Landslide Point and Landslide Area Data Set (1915–2021). Natl. Cryosphere Desert Data Cent. 17 January 2021. Available online: http://www.ncdc.ac.cn/portal/metadata/c92f774a-f368-4ad0-b99d-48007d3e6dc6 (accessed on 8 May 2024).
- Kirschbaum, D.; Stanley, T.; Zhou, Y. Spatial and temporal analysis of a global landslide catalog. Geomorphology 2015, 249, 4–15. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Shirmohammadi, B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology 2014, 204, 646–656. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [Google Scholar] [CrossRef]
- Bragagnolo, L.; Rezende, L.R.; Silva, R.V.; da Grzybowski, J.M.V. Convolutional neural networks applied to semantic segmentation of landslide scars. Catena 2021, 201, 105189. [Google Scholar] [CrossRef]
- Cai, H.J.; Chen, T.; Niu, R.Q.; Plaza, A. Landslide Detection Using Densely Connected Convolutional Networks and Environmental Conditions. JSTARS 2020, 14, 01373. [Google Scholar] [CrossRef]
- Zhu, Q.; Chen, L.; Hu, H.; Xu, B.Z.; Zhang, Y.T.; Li, H.F. Deep Fusion of Local and Non-Local Features for Precision Landslide Recognition. arXiv 2020, arXiv:2002.08547. [Google Scholar]
- Amatya, P.; Kirschbaum, D.; Stanley, T.; Tanyas, H. Landslide mapping using object-based image analysis and open source tools. Eng. Geol. 2021, 282, 106000. [Google Scholar] [CrossRef]
- Prakash, N.; Manconi, A.; Loew, S. A new strategy to map landslides with a generalized convolutional neural network. Sci. Rep. 2021, 11, 9722. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.Z.; Zhang, M.; Ke, H.F.; Fang, X.; Zhan, Z.; Chen, S.X. Landslide Recognition by Deep Convolutional Neural Network and Change Detection. IEEE T. Geosci. Remote 2021, 59, 4654–4672. [Google Scholar] [CrossRef]
- Li, Y.; Cui, P.; Ye, C.M.; Junior, J.M.; Zhang, Z.T.; Guo, J.; Li, J. Accurate Prediction of Earthquake-Induced Landslides Based on Deep Learning Considering Landslide Source Area. Remote Sens. 2021, 13, 3436. [Google Scholar] [CrossRef]
- Amankwah, S.O.Y.; Wang, G.J.; Gnyawali, K.; Hagan, D.F.T.; Sarfo, I.; Zhen, D.; Nooni, I.K.; Ullah, W.; Duan, Z. Landslide detection from bitemporal satellite imagery using attention-based deep neural networks. Landslides 2022, 19, 2459–2471. [Google Scholar] [CrossRef]
- Fu, R.; He, J.; Liu, G.; Li, W.L.; Mao, J.Q.; He, M.H.; Lin, Y.Y. Fast Seismic Landslide Detection Based on Improved Mask R-CNN. Remote Sens. 2022, 14, 3928. [Google Scholar] [CrossRef]
- Zhang, S.R.; Jiang, J.J.; Mu, Y.M.; Bai, S.B. Identification of potential landslides in Minjiang River Basin based on SBAS technology. Mountainology 2018, 36, 91–97. [Google Scholar]
- Wang, H.J.; Zhang, L.M.; Yin, K.S.; Luo, H.Y.; Li, J.H. Landslide identification using machine learning. Geosci. Front. 2021, 12, 351–364. [Google Scholar] [CrossRef]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 2021, 32, e3998. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Yu, B.; Chen, F.; Wang, L.I. Current status of landslide extraction methods based on high-resolution satellite remote sensing images. Remote Sens. Technol. Appl. 2023, 38, 108–115. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Yang, W.T.; Wang, M.; Shi, P.J.; Shen, L.L.; Liu, L.Y. Object-oriented rapid identification of landslides based on terrain factors segmentation and classification. J. Nat. Disasters 2015, 25, 1–6. [Google Scholar]
- Yu, B.; Chen, F.; Xu, C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Comput. Geosci. 2020, 135, 104388. [Google Scholar]
- Sameen, M.I.; Pradhan, B. Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information. IEEE Access 2019, 7, 114363–114373. [Google Scholar] [CrossRef]
- Zhao, F.J.; Fan, Y.J. Landslide Hazard Identification from Remote Sensing Images Based on Deep Convolutional Neural Network. J. Heilongjiang Univ. Sci. Technol. 2020, 30, 556–561. [Google Scholar]
- Ji, S.P.; Yu, D.W.; Shen, C.Y.; Li, W.L.; Xu, Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Cheng, Z.; Gong, W.P.; Tang, H.M.; Juan, H.; Deng, Q.L.; Chen, J.; Ye, X.F. UAV photogrammetry-based remote sensing and preliminary assessment of the behavior of a landslide in Guizhou, China. Eng. Geol. 2021, 289, 10172. [Google Scholar] [CrossRef]
- Cheng, L.; Li, J.; Duan, P.; Wang, M. A Small Attentional YOLO Model for Landslide Detection from Satellite Remote Sensing Images. Landslides 2021, 18, 2751–2765. [Google Scholar] [CrossRef]
- Li, B.; Li, J.J. Methods for landslide detection ased on lightweight YOLOv4 convolutional neural network. Earth Sci. Inform. 2022, 15, 765–775. [Google Scholar] [CrossRef]
- Wang, H.H.; Liu, J.; Zeng, S.K.; Xiao, K.W.; Yang, D.Y.; Yao, G.L.; Yang, R.H. A novel landslide identification method for multi-scale and complex background region based on multi-model fusion: YOLO + U-Net. Landslides 2024, 21, 901–917. [Google Scholar] [CrossRef]
- Han, Z.; Fang, Z.X.; Li, Y.G.; Fu, B.J. A novel Dynahead-Yolo neural network for the detection of landslides with variable proportions using remote sensing images. Front. Earth Sci. 2023, 10, 1077153. [Google Scholar] [CrossRef]
- Li, Z.W. Research on Improved YOLOv5 Landslide Area Target Detection Algorithm; Lanzhou Jiaotong University: Lanzhou, China, 2023. [Google Scholar]
- Liu, P.; Wei, Y.M.; Wang, Q.J.; Xie, J.J.; Chen, Y.; Li, Z.C.; Zhou, H.Y. A Research on Landslides Automatic Extraction Model Based on the Improved Mask R-CNN. ISPRS Int. J. Geo. Inf. 2021, 10, 168. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.H.; Zhang, J.Y.; Liu, Z. Research on landslides detection method using remote sensingimages based on Mask R-CNN. J. Shandong Jianzhu Univ. 2023, 38, 94–103. [Google Scholar]
- Yun, L.; Zhang, X.X.; Zheng, Y.C.; Wang, D.H.; Hua, L.Z. Enhance the Accuracy of Landslide Detection in UAV Images Using an Improved Mask R-CNN Model: A Case Study of Sanming, China. Sensors 2023, 23, 4287. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.D.; Xi, J.B.; Li, Z.H.; Ding, M.T.; Yang, H.T.; Xie, L.S. Landslide Detection and Segmentation Using Mask R-CNN with Simulated Hard Samples. Geomat. Inf. Sci. Wuhan Univ. 2023, 48, 1931–1942. [Google Scholar]
- Ghorbanzadeh, O.; Crivellari, A.; Ghamisi, P.; Shahabi, H.; Blaschke, T. A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan). Sci. Rep. 2021, 11, 14629. [Google Scholar] [CrossRef] [PubMed]
- Meena, S.R.; Soares, L.P.; Grohmann, C.H.; Westen, C.V.; Bhuyan, K.; Singh, R.P.; Floris, M.; Catani, F. Landslide detection in the Himalayas using machine learning algorithms and U-Net. Landslides 2022, 19, 1209–1229. [Google Scholar] [CrossRef]
- Wei, R.L.; Ye, C.M.; Tianbo Sui, T.B.; Zhang, H.J.; Ge, Y.G.; Li, Y. A feature enhancement framework for landslide detection. Int. J. Appl. Earth Obs. 2023, 124, 103521. [Google Scholar] [CrossRef]
- Gao, O.Y.; Niu, C.Y.; Liu, W.; Li, T.L.; Zhang, H.B.; Hu, Q. E-DeepLabV3+: A Landslide Detection Method for Remote Sensing Images. In Proceedings of the 10th ITAIC, Chongqing, China, 17–19 June 2022; pp. 53–577. [Google Scholar]
- Xu, Y.M.; Gong, J.H.; Li, X.J. Landslide Identification Based on Improved DeepLabV3+ Network. Surv. Mapp. 2023, 46, 227–231. [Google Scholar]
- Mao, J.Q.; He, J.; Liu, G.; Fu, R. Landslide recognition based on improved DeeplabV3+ algorithm. J. Nat. Disasters 2023, 32, 227–234. [Google Scholar]
- Deng, Z.Y.; Huang, H.F.; Li, Q.Q.; Zhou, H.; Zhang, R.; Liu, Q.; Dong, Z.H. Identification of Soil Landslides at the Head of the Three Gorges Reservoir Based on Swin Transformer Target Panoramic Segmentation. Water Resour. Hydropower Eng. 2023, 11, 24. [Google Scholar]
- Lv, P.Y.; Ma, L.S.; Li, Q.M.; Du, F. ShapeFormer: A Shape-Enhanced Vision Transformer Model for Optical Remote Sensing Image Landslide Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2681–2689. [Google Scholar] [CrossRef]
- Wu, L.; Liu, R.; Ju, N.P.; Zhang, A.; Gou, J.S.; He, G.L.; Lei, Y.Z. Landslide mapping based on a hybrid CNN-transformer network and deep transfer learning using remote sensing images with topographic and spectral features. Int. J. Appl. Earth Obs. 2024, 126, 103612. [Google Scholar] [CrossRef]
- Chai, J.W.; Nan, Y.T.; Guo, R.; Lin, Y.Q.; Liu, Y.T. Recognition Method of Landslide Remote Sensing Image based on EfficientNet. In Proceedings of the 2nd ICETCI, Changchun, China, 27–29 May 2022; pp. 1224–1228. [Google Scholar]
- Li, C.D.; Long, J.J.; Liu, Y.; Yi, S.F.; Feng, P.F. Landslide Remote Sensing Image Recognition Based on EfficientNet: Taking Bijie City, Guizhou Province as an Example. South China Geol. 2023, 39, 403–412. [Google Scholar]
- Meena, S.R.; Nava, L.N.; Bhuyan, K.; Puliero, S.; Soares, L.P.; Dias, H.C.; Floris, M.; Catani, F. HR-GLDD: A globally distributed dataset using generalized deep earning (DL) for rapid landslide mapping on high-resolution (HR) satellite imagery. Earth Syst. Sci. Data 2023, 15, 3283–3298. [Google Scholar] [CrossRef]
- Xu, Y.L.; Ouyang, C.J.; Xu, Q.S.; Wang, D.P.; Zhao, B.; Luo, Y.T. CAS Landslide Dataset: A Large-Scale and Multisensor Dataset for Deep Learning-Based Landslide Detection. Sci. Data 2024, 11, 12. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, M.Z.; Wang, T.; Jiang, X.; Liu, B.Q.; Dai, P.Y. An Overview of Landslide Detection: Deep Learning and Machine Learning Approaches. In Proceedings of the 4th ICAIBD, Chengdu, China, 28–31 May 2021; pp. 265–271. [Google Scholar]
- Shikada, M.; Suzuki, Y.; Kusaka, T.; Goto, S.; Kawata, Y. An application of GIS information and remotely sensed data for extraction of landslide. In Proceedings of the IEEE IGARSS’97, Singapore, 3–8 August 1997; pp. 210–212. [Google Scholar]
- Hu, D.Y.; Li, J.; Zhao, W.J.; Peng, G.X. An object-based landslide detection method for high-resolution remote sensing images. J. Nat. Hazards 2008, 17, 42–46. [Google Scholar]
- Yang, Z.Y.; Han, L.Y.; Zheng, X.X.; Li, W.J.; Feng, L.; Wang, Y.; Yang, Y.P. Remote sensing imagery and DEM landslide identification based on convolutional neural network—A case of loess landslide. Remote Sens. Nat. Resour. 2022, 34, 224–230. [Google Scholar]
- Chen, Y.; Sun, H.Q.; Zhao, X.; Tang, H.; Zhou, T.G. Remote sensing analysis of landslide detection in river valleys in earthquake-stricken areas—A case study of landslides in Beichuan County. J. Nat. Hazards 2011, 20, 97–104. [Google Scholar]
- Jian, X.T.; Zhao, K.; Zuo, X.Q.; Zhu, Q.; Zhu, W. Landslide hazard identification based on Faster R-CNN target detection—An example of urban area in Fugong County. Chem. Miner. Process. 2022, 51, 19–24+29. [Google Scholar]
- Jena, R.; Pradhan, B.; Alamri, A.M. Susceptibility to Seismic Amplification and Earthquake Probability Estimation Using Recurrent Neural Network (RNN) Model in Odisha, India. Appl. Sci. 2020, 10, 5355. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Li, L.W.; Wu, Y.P.; Miao, F.S.; Zhang, L.F.; Xue, Y. Interval prediction of landslide displacement based on different Bootstrap methods and KELM-BPNN model. J Rock Mech. Geotech. 2019, 38, 912–926. [Google Scholar]
- Guo, J.W.; Li, Y.S.; Li, Z.; Liu, K.M.; Zhang, S.Y. Landslide hazard interpretation model for high resolution imagery with migration learning support. J. Surv. Mapp. Sci. Technol. 2016, 33, 496–501. [Google Scholar]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Wang, T.; Su, H.; Dong, M. Research progress in landslide identification: A bibliometric analysis-from 2003 to 2022. J. Yunnan Univ. Nat. Sci. Ed. 2023, 45 (Supp. S1), 331–339. [Google Scholar]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on CVPR, Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Du, B.; Zhang, W. Research on object-oriented high-resolution remote sensing image classification technology. West. Resour. 2016, 5, 135–138. [Google Scholar]
- Cao, Z.W. Research on Feature Classification of Remote Sensing Images of Islands Based on Artificial Neural Network; Shanghai Ocean University: Shanghai, China, 2016. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.J.; Zhang, C.J.; Xu, B.; Luo, C.C.; Zhou, H.; Zhou, K. AED-Net: A semantic segmentation model for landslide hazard remote sensing images. J. Geo. Inf. Sci. 2023, 25, 2012–2025. [Google Scholar]
- Ullo, S.L.; Mohan, A.; Sebastianelli, A.; Ahamed, S.E.; Kumar, B.; Dwivedi, R.; Sinha, G.R. A New Mask R-CNN-Based Method for Improved Landslide Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3799–3810. [Google Scholar] [CrossRef]
- Mu, F.; Li, J.; Shen, N.; Huang, S.; Pan, Y.; Xu, T. Pixel-Adaptive Field-of-View for Remote Sensing Image Segmentation. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6512705. [Google Scholar] [CrossRef]
- Yi, Y.; Zhang, W. A New Deep-Learning-Based Approach for Earthquake-Triggered Landslide Detection from Single-Temporal RapidEye Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6166–6176. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.S.; Zhang, S.; Wang, H. Application of deep learning techniques in landslide identification from remote sensing images. Beijing Surv. Mapp. 2022, 36, 1385–1390. [Google Scholar]
- Niu, C.Y.; Gao, O.Y.; Liu, W.; Lai, T.; Zhang, H.B.; Huang, Y. Research Progress of Landslide Detection in Optical Remote Sensing Images. Spacecr. Recovery Remote Sens. 2023, 44, 133–144. [Google Scholar]
- Lipton, Z.C.; Berkowitz, J. A Critical Review of Recurrent Neural Networks for Sequence Learning. arXiv 2015, arXiv:1506.00019v3. [Google Scholar]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent Advances in Recurrent Neural Networks. arXiv 2018, arXiv:1801.01078v3. [Google Scholar]
- Chen, H.Q.; Zeng, Z.G.; Tang, H.M. Study on Landslide Deformation Prediction Based on Recurrent Neural Network under the Function of Rainfall. Neural Process. Letters 2012, 7666, 683–690. [Google Scholar]
- Xu, J.C.; Jiang, Y.; Yang, C.B. Landslide Displacement Prediction during the Sliding Process Using XGBoost, SVR and RNNs. Appl. Sci. 2022, 12, 6506. [Google Scholar] [CrossRef]
- Cui, W.Q.; He, X.; Yao, M.; Wang, Z.; Li, J.; Hao, Y.; Wu, W.; Zhao, H.; Chen, X.; Cui, W. Landslide Image Captioning Method Based on Semantic Gate and Bi-Temporal LSTM. ISPRS Int. J. Geo. Inf. 2020, 9, 194. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.Z.; Li, D.F.; Jia, J.R.; Yang, A.Q.; Zheng, Z.; Yin, L.R. Conv-trans dual network for landslide detection of multi-channel optical remote sensing images. Front. Earth Sci. 2023, 11, 1182145. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Sci. Rev. 2021, 223, 103858. [Google Scholar] [CrossRef]
- Tang, W.H. Review of Image Classification Algorithms Based on Graph Convolutional Networks. EAI Endorsed Trans. AI Robot. 2023, 2, 1–10. [Google Scholar] [CrossRef]
- Xia, J.; Liu, H.; Zhu, L. Landslide Hazard Identification Based on Deep Learning and Sentinel-2 Remote Sensing Imagery. J. Phys. Conf. Ser. 2022, 2258, 012031. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on CVPR, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE ICCV, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. 2020, 42, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhang, F.; Xia, J.; Wu, C. Landslide Extraction Using Mask R-CNN with Background-Enhancement Method. Remote Sens. 2022, 14, 2206. [Google Scholar] [CrossRef]
- Wu, Z.; Li, H.; Yuan, S.; Gong, Q.; Wang, J.; Zhang, B. Mask R-CNN-Based Landslide Hazard Identification for 22.6 Extreme Rainfall Induced Landslides in the Beijiang River Basin, China. Remote Sens. 2023, 15, 4898. [Google Scholar] [CrossRef]
- Ronneberger, Q.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Liu, P.; Wei, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef]
- Dong, Z.; An, S.; Zhang, J.; Yu, J.; Li, J.; Xu, D. L-Unet: A Landslide Extraction Model Using Multi-Scale Feature Fusion and Attention Mechanism. Remote Sens. 2022, 14, 2552. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, J.; Li, X.; Chen, F.; Cui, R.; Li, H.M.; Du, B.W. A deep learning recognition model for landslide terrain based on multi-source data fusion. Chin. J. Geol. Hazard Control 2022, 33, 33–41. [Google Scholar]
- Zhang, Y.L.; Fu, Y.H.; Sun, Y.; Zeng, D.D.; Xu, Z.R.; Wu, H.B. Landslide detection from high-resolution remote sensing images combined with deep neural networks. Highway 2021, 66, 188–194. [Google Scholar]
- Hacıefendioğlu, K.; Demir, G.; Başağa, H.B. Landslide detection using visualization techniques for deep convolutional neural network models. Nat. Hazards 2021, 109, 329–350. [Google Scholar] [CrossRef]
- Zhao, H.S.; Shi, J.P.; Qi, X.J.; Wang, X.G.; Jia, J.Y. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 16–21 July 2017; pp. 2881–2890. [Google Scholar]
- Ghorbanzadeh, Q.; Xu, Y.H.; Ghamisi, P.; Kopp, M.; Kreil, D. Landslide4Sense: Reference Benchmark Data and Deep Learning Models for Landslide Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5633017. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.; Mark Liao, H.Y. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Jocher, G. YOLOv5 release v7.0. Available online: https://github.com/ultralytics/yolov5/releases/tag/v7.0 (accessed on 22 November 2022).
- Ge, Z.; Liu, S.T.; Wang, F.; Li, Z.M.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Li, C.Y.; Li, L.L.; Jiang, H.L.; Weng, K.H.; Geng, Y.F.; Li, L.; Ke, Z.D.; Li, Q.Y.; Cheng, M.; Nie, W.Q.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Wang, C.Y.; Bochkovskiy, A.; Mark Liao, H.Y. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar]
- Jocher, G. YOLOv8 release v8.1.0. Available online: https://github.com/ultralytics/ultralytics/releases (accessed on 10 January 2023).
- Wang, C.Y.; Yeh, I.H.; Mark Liao, H.Y. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar]
- Wang, T.; Liu, M.Z.; Zhang, H.; Huang, Y.; Jiang, X.Y. Landslide Detection Based on Improved YOLOv5 and Satellite Images. In Proceedings of the 4th PRAI, Chengdu, China, 28–31 May 2021; pp. 367–371. [Google Scholar]
- Yu, Z.; Chang, R.; Chen, Z. Automatic Detection Method for Loess Landslides Based on GEE and an Improved YOLOX Algorithm. Remote Sens. 2022, 14, 4599. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, T.T.; Deng, Y.H.; Liu, Z.H. SE-YOLOv7 Landslide Detection Algorithm Based on Attention Mechanism and Improved Loss Function. Land 2023, 12, 1522. [Google Scholar] [CrossRef]
- Wu, T.Y.; Dong, Y.K. YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition. Appl. Sci. 2023, 13, 12977. [Google Scholar] [CrossRef]
- Guo, H.; Yi, B.; Yao, Q.; Gao, P.; Li, H.; Sun, J.; Zhong, C. Identification of Landslides in Mountainous Area with the Combination of SBAS-InSAR and Yolo Model. Sensors 2022, 22, 6236. [Google Scholar] [CrossRef] [PubMed]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; pp. 21–37. [Google Scholar]
- Cheng, L.B. Research on Landslide Disaster Detection Model Based on Deep Learning; Yunnan Normal University: Kunming, China, 2021. [Google Scholar]
- Xiong, C.Q.; Zhang, Y.N.; Yang, H.S.; Tang, D.J.; Liu, S.J. Identification of landslide disasters in transmission line corridors based on improved YOLOv5. Jidian Xinxi 2023, 35, 27–29. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the 31st NIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.H.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the 2020 IEEE Conference on CVPR, Seattle, WA, USA, 16–20 June 2020. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the 16th ECCV, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Esser, P.; Rombach, R.; Ommer, B. Taming Transformers for High-Resolution Image Synthesis. In Proceedings of the 2021 IEEE/CVF Conference on CVPR, 20–25 June 2021; pp. 12868–12878. [Google Scholar]
- Jiang, H.; Peng, M.; Zhong, Y.; Xie, H.; Hao, Z.; Lin, J.; Ma, X.; Hu, X. A Survey on Deep Learning-Based Change Detection from High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 1552. [Google Scholar] [CrossRef]
- Tang, X.C.; Tu, Z.H.; Ren, X.Q.; Fang, C.Y.; Wang, Y.; Liu, X.; Fan, X.M. A Multi-Modal Deep Neural Network Model for Forested Landslide Detection. Geomat. Inf. Sci. Wuhan Univ. 2023. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Xu, C.; Li, L. Landslide Detection Based on ResU-Net with Transformer and CBAM Embedded: Two Examples with Geologically Different Environments. Remote Sens. 2022, 14, 2855. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.Z.; Wang, P.Z.; Mu, J.Q.; Jiao, S.T.; Zhao, X.P.; Wang, Z.H.; Wang, K.J.; Zhu, Y.Q. Automatic Identification of Landslides Based on Deep Learning. Appl. Sci. 2022, 12, 8153. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, S.K.; Qin, Z.J.; Zhang, Q. SENet-optimized Deeplabv3 + landslide detection. Sci. Technol. Eng. 2022, 22, 14635–14643. [Google Scholar]
- Chen, L.; Lin, W.; Chen, P.; Jiang, S.; Liu, L.; Hu, H. Porosity Prediction from Well Logs Using Back Propagation Neural Network Optimized by Genetic Algorithm in One Heterogeneous Oil Reservoirs of Ordos Basin, China. J. Earth Sci. 2021, 32, 828–838. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 2019 ICML, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Hu, F.J.; Lv, W.C.; Zhou, F.Y.; Guo, X.H.; Lu, F.K. A landslide extraction method for high-resolution remote sensing images with improved TransUNet. Radio Eng. 2023, 13, 5116. [Google Scholar]
- Li, B.S.; Tang, R.P.; Zhang, Q.; Xie, Y.H.; Zhang, Y. Layer depth structure and saliency characteristics of landslide extraction convolutional neural network. Surv. Mapp. Sci. 2022, 47, 154–164. [Google Scholar]
- Shi, Y.; Shi, L.L.; Niu, M.J.; Zhao, K. Automatic multi-task identification of loess landslide based on single-stage instance segmentation network. Surv. Mapp. Bull. 2022, 4, 26–31. [Google Scholar]
- Guo, Z.Z.; Yang, Y.F.; He, J.; Huang, D. A Novel Deep Learning Model for Predicting Landslide Displacements Considering Attention Mechanism. Earth Science. 23 August 2022. Available online: https://kns.cnki.net/kcms/detail/42.1874.p.20220823.0908.004.html (accessed on 8 May 2024).
- Chen, S.J.; Xiang, C.S.; Kang, Q.; Wu, T.; Liu, K.; Feng, L.; Deng, T. Landslide hazard detection method based on the fusion of spatial and temporal spectral features from multi-source remote sensing. Comput. Res. Dev. 2020, 57, 1877–1887. [Google Scholar]
- Cai, H.J.; Han, H.H.; Zhang, Y.L.; Wang, L.S. Convolutional neural network landslide identification based on topographic feature fusion. J. Earth Sci. Environ. 2022, 44, 568–579. [Google Scholar]
- Ju, Y.Z.; Xu, Q.; Jin, S.C.; Li, W.L.; Dong, X.J.; Guo, Q.H. Automatic identification of loess landslides using deep learning methods. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1747–1755. [Google Scholar]
- Ma, T.; Yang, X.M.; Yan, Y.G.; Yan, D.C. A point cloud filtering algorithm for densely vegetated areas based on windowing and terrain slope. Surv. Mapp. Bull. 2021, 8, 33–36. [Google Scholar]
- Fu, R.; He, J.; Liu, G. Post-earthquake landslide identification after the 7.2 magnitude earthquake in Haiti in 2021 based on improved YOLOv. Earthq. Res. 2023, 46, 300–307. [Google Scholar]
- Hu, F.J.; Lyu, W.C.; Zhou, F.Y.; Guo, X.H.; Lu, F.K. An improved TransUNet landslide extraction method for high resolution remote sensing images. Radio Eng. 2023, 10, 19. [Google Scholar]
- He, H.Q.; Li, C.C.; Yang, R.H.; Zeng, H.E.; Li, L.; Zhu, Y.F. Multisource Data Fusion and Adversarial Nets for Landslide Extraction from UAV-Photogrammetry-Derived Data. Remote Sens. 2022, 14, 3059. [Google Scholar] [CrossRef]
- Xin, L.B.; Han, L.; Li, L.Z. Landslide Intelligent Recognition Based on Multi-source Data Fusion. J. Earth Sci. Environ. 2023, 45, 920–928. [Google Scholar]
- Ye, C.M.; Li, Y.; Cui, P.; Liang, L.; Pirasteh, S.; Marcato, J.J.; Gonçalves, W.N.; Li, J. Landslide detection of hyperspectral remote sensing data based on deep learning with constrains. IEEE J. Sel. Top. Appl. 2019, 12, 5047–5060. [Google Scholar] [CrossRef]
- Liu, X.R.; Peng, Y.X.; Lu, Z.L.; Li, W.; Yu, J.C.; Ge, D.Q.; Xiang, W. Feature-Fusion Segmentation Network for Landslide Detection Using High-Resolution Remote Sensing Images and Digital Elevation Model Data. IEEE T. Geosci. Remote Sens. 2023, 61, 4500314. [Google Scholar] [CrossRef]
- Zhang, Y. Detecting Ground Deformation and Investigating Landslides Using InSAR Technique—Taking Middle Reach of Bailong River Basin as an Example; Lanzhou University: Lanzhou, China, 2018. [Google Scholar]
- Xu, G.S.; Wang, Y.; Lizhe Wang, L.Z.; Soares, L.P.; Grohmann, C.H. Feature-Based Constraint Deep CNN Method for Mapping Rainfall-Induced Landslides in Remote Regions with Mountainous Terrain: An Application to Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2044–2659. [Google Scholar] [CrossRef]
- Xu, S.L. Study on Dynamic Landslide Susceptibility Mapping Based on Multi-Source Remote Sensing Imagery; China University of Geosciences: Wuhan, China, 2018. [Google Scholar]
- Zhang, Y.S.; Liu, X.Y.; Yao, X. InSAR-based method for early recognition of ancient landslide reactivation in Dadu River, China. Shuili Xuebao 2020, 50, 545–555. [Google Scholar]
- Xu, Q. Understanding and Consideration of Related Issues in Early Identification of Potential Geohazards. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1651–1659. [Google Scholar]
- Yan, Y.Q.; Guo, C.B.; Zhang, Y.S.; Zhang, X.J.; Zheng, Y.Z.; Li, X.; Yang, Z.H.; Wu, R.A. Study of the deformation characteristics of the Xiongba ancient landslide based on SBAS-InSAR method, Tibet, China. Acta Geol. Sin. 2021, 95, 3556–3570. [Google Scholar]
- Dai, K.; Feng, Y.; Zhuo, G.C.; Tie, Y.B.; Deng, J.; Balz, T.; Li, Z.H. Applicability Analysis of Potential Landslide Identification by InSAR in Alpine-Canyon Terrain—Case Study on Yalong River. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2110–2118. [Google Scholar] [CrossRef]
- Wu, M.Y.; Luo, M.; Liu, S.H. Comprehensive identification of potential and old landslides based on optical remote sensing and InSAR technologies: A case study in northwestern Yunnan Province. Chin. J. Geol. Hazard Control 2022, 33, 84–93. [Google Scholar]
- Zhou, H.; Dai, K.R.; Tang, X.C.; Xiang, J.M.; Li, R.P.; Wu, M.T.; Peng, Y.R.; Li, Z.H. Time-Series InSAR with Deep-Learning-Based Topography-Dependent Atmospheric Delay Correction for Potential Landslide Detection. Remote Sens. 2023, 15, 5287. [Google Scholar] [CrossRef]
- Zhao, H.W.; Zhou, L.; Tan, M.L.; Tang, M.G.; Tong, Q.G.; Qin, J.J.; Peng, Y.H. Early identification of landslide hidden danger in Sichuan-Chongqing power transmission network based on optical remote sensing and SBAS InSAR. Remote Sens. Nat. Resour. 2023, 25, 264–272. [Google Scholar]
File Type | Number of Landslides | Number of Non Landslides |
---|---|---|
Landslide image (*.png) | 770 | 2003 |
Landslide shape file (*.png) | 770 | |
DEM (*.png) | 770 | 2003 |
Boundary coordinate file | 770 |
Subdataset | Amount | Acquisition Time | Sensor | Ground Resolution (m) |
---|---|---|---|---|
Palu | 817 | January 2021–November 2021 | WorldView2/3 | 5 |
Lombok | 436 | May 2019–December 2019 | WorldView2/3 | 5 |
Hokkaido Iburi-Tobu | 1484 | September 2018–October 2018 | SAT | 3 |
Tiburon Peninsula (Sentinel) | 606 | March 2020–Jnue 2020 | Sentinel-2/L2A | 5 |
Tiburon Peninsula (Planet) | 325 | September 2021–December 2021 | Planet | 4 |
Mengdong | 1155 | November 4th, 2018 | SuperView-1 | 0.5 |
Moxitaidi (SAT) | 652 | September 2022–October 2022 | Sentinel-2/L2A | 0.6 |
Moxitaidi (UAV-0.6 m) | 984 | September 2022–October 2022 | UAV | 0.6 |
Moxitaidi (UAV-1 m) | 483 | September 2022–October 2022 | UAV | 1 |
Moxi town (0.2 m) | 1635 | September 2022–October 2022 | 0.2 | 0.2 |
Moxi town (1 m) | 160 | September 2022–October 2022 | UAV | 1 |
Longxi River (SAT) | 1769 | March 2015–December 2015 | GF-1 | 0.5 |
Longxi River (UAV) | 2504 | March 2011–May 2011 | UAV | 0.5 |
Jiuzhai valley (0.2 m) | 5925 | Augest 2017–September 2017 | UAV | 0.2 |
Jiuzhai valley (0.5 m) | 1752 | Augest 2017–September 2017 | UAV | 0.5 |
Wenchuan | 178 | November 2008–December 2008 | Landsat | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, G.; Wang, Z.; Huang, C.; Yang, Y.; Hu, J.; Yan, X.; Tan, Y.; Liao, L.; Zhou, X.; Li, Y.; et al. Advances in Deep Learning Recognition of Landslides Based on Remote Sensing Images. Remote Sens. 2024, 16, 1787. https://doi.org/10.3390/rs16101787
Cheng G, Wang Z, Huang C, Yang Y, Hu J, Yan X, Tan Y, Liao L, Zhou X, Li Y, et al. Advances in Deep Learning Recognition of Landslides Based on Remote Sensing Images. Remote Sensing. 2024; 16(10):1787. https://doi.org/10.3390/rs16101787
Chicago/Turabian StyleCheng, Gong, Zixuan Wang, Cheng Huang, Yingdong Yang, Jun Hu, Xiangsheng Yan, Yilun Tan, Lingyi Liao, Xingwang Zhou, Yufang Li, and et al. 2024. "Advances in Deep Learning Recognition of Landslides Based on Remote Sensing Images" Remote Sensing 16, no. 10: 1787. https://doi.org/10.3390/rs16101787