Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network
Abstract
:1. Introduction
- We demonstrate that leveraging multimodal data yields superior classification results compared to utilizing unimodal data for mineral classification tasks.
- Our study reveals the network’s capability to learn various data modalities present in 3D hyperclouds through the expansion of the network into a multi-stream architecture.
- We introduce an approach of employing 3D CNNs on top of the EdgeConv operator to capture spectral patterns, leading to enhanced segmentation performance.
- We perform a direct comparison of segmentation results between point cloud and image data formats, highlighting the superior performance of point-based segmentation.
2. Related Works
2.1. Hyperspectral Data Segmentation
2.2. Point Cloud Segmentation
2.3. Hyperspectral and Point Cloud Fusion
2.4. Fusion Models for Multimodal Data
3. Dataset and Methods
3.1. Dataset Description
3.2. Data Preprocessing
3.3. Proposed Network
3.3.1. Graph Reconstruction
3.3.2. Multi-Stream Architecture
3.3.3. The 3D CNN as Channel-Attention Module
3.3.4. Geometric Features Transformation
3.4. Comparison to Image Segmentation
4. Results
4.1. Training Setting
4.2. Quantitative Results
4.3. Qualitative Results
4.4. Comparison of Point Cloud and Image Segmentation
5. Discussion
5.1. Combining Different Data Modalities
5.2. Multi-Stream Network
5.3. The 3D CNNs as Channel Attention Module
5.4. Geometric Features Transformation
5.5. Choice of the Backbone
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Ben Hamida, A.; Benoit, A.; Lambert, P.; Ben-Amar, C. Deep Learning Approach for Remote Sensing Image Analysis. In Proceedings of the Big Data from Space (BiDS’16), Santa Cruz de Tenerife, Spain, 15–17 March 2016; Giorgio, S.P.M.P., Ed.; Publications Office of the European Union: Luxembourg, 2016; p. 133. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going Deeper With Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef]
- Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Vest Sørensen, E.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops. Remote Sens. 2018, 10, 176. [Google Scholar] [CrossRef]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens. 2018, 10, 1366. [Google Scholar] [CrossRef]
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Cecilia Contreras Acosta, I.; Tusa, L.; Herrmann, E.; Möckel, R.; Gloaguen, R. Multi-scale, multi-sensor data integration for automated 3-D geological mapping. Ore Geol. Rev. 2021, 136, 104252. [Google Scholar] [CrossRef]
- Afifi, A.J.; Thiele, S.T.; Rizaldy, A.; Lorenz, S.; Ghamisi, P.; Tolosana-Delgado, R.; Kirsch, M.; Gloaguen, R.; Heizmann, M. Tinto: Multisensor Benchmark for 3-D Hyperspectral Point Cloud Segmentation in the Geosciences. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5501015. [Google Scholar] [CrossRef]
- Ramachandram, D.; Taylor, G.W. Deep Multimodal Learning: A Survey on Recent Advances and Trends. IEEE Signal Process. Mag. 2017, 34, 96–108. [Google Scholar] [CrossRef]
- Boulahia, S.; Amamra, A.; Madi, M. Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition. Mach. Vis. Appl. 2021, 32, 121. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, X.; Pun, M.O. A Crossmodal Multiscale Fusion Network for Semantic Segmentation of Remote Sensing Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3463–3474. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10. [Google Scholar]
- Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (tog) 2019, 38, 146. [Google Scholar] [CrossRef]
- Guo, M.H.; Cai, J.X.; Liu, Z.N.; Mu, T.J.; Martin, R.R.; Hu, S.M. Pct: Point cloud transformer. Comput. Vis. Media 2021, 7, 187–199. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Computer Vision—ECCV 2018, Proceedings of the 15th European Conference, Munich, Germany, 8–14 September 2018; Proceedings, Part VII; Springer: Cham, Switzerland, 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual Attention Network for Scene Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3141–3149. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar] [CrossRef]
- Ghamisi, P.; Maggiori, E.; Li, S.; Souza, R.; Tarablaka, Y.; Moser, G.; De Giorgi, A.; Fang, L.; Chen, Y.; Chi, M.; et al. New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43. [Google Scholar] [CrossRef]
- Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced spectral classifiers for hyperspectral images: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [Google Scholar] [CrossRef]
- Goel, P.; Prasher, S.; Patel, R.; Landry, J.; Bonnell, R.; Viau, A. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Comput. Electron. Agric. 2003, 39, 67–93. [Google Scholar] [CrossRef]
- Ratle, F.; Camps-Valls, G.; Weston, J. Semisupervised Neural Networks for Efficient Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2271–2282. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Wu, H.; Prasad, S. Semi-Supervised Deep Learning Using Pseudo Labels for Hyperspectral Image Classification. IEEE Trans. Image Process. 2018, 27, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Prasad, S. Convolutional Recurrent Neural Networks for Hyperspectral Data Classification. Remote Sens. 2017, 9, 298. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral-Spatial Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef]
- Aptoula, E.; Dalla Mura, M.; Lefèvre, S. Vector Attribute Profiles for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3208–3220. [Google Scholar] [CrossRef]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar] [CrossRef]
- Slavkovikj, V.; Verstockt, S.; De Neve, W.; Van Hoecke, S.; Van de Walle, R. Hyperspectral Image Classification with Convolutional Neural Networks. In Proceedings of the 23rd ACM International Conference on Multimedia, New York, NY, USA, 26–30 October 2015; pp. 1159–1162. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Spectral–Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 2015, 6, 468–477. [Google Scholar] [CrossRef]
- Audebert, N.; Saux, B.L.; Lefèvre, S. Deep Learning for Classification of Hyperspectral Data: A Comparative Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Deep learning on 3D point clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Chen, Z.; Lu, Z. A Review of Deep Learning-Based Semantic Segmentation for Point Cloud. IEEE Access 2019, 7, 179118–179133. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, J.; Zhu, X.X. Linking Points With Labels in 3D: A Review of Point Cloud Semantic Segmentation. IEEE Geosci. Remote Sens. Mag. 2020, 8, 38–59. [Google Scholar] [CrossRef]
- Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-view Convolutional Neural Networks for 3D Shape Recognition. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 945–953. [Google Scholar] [CrossRef]
- Guerry, J.; Boulch, A.; Le Saux, B.; Moras, J.; Plyer, A.; Filliat, D. SnapNet-R: Consistent 3D Multi-view Semantic Labeling for Robotics. In Proceedings of the 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Venice, Italy, 22–29 October 2017; pp. 669–678. [Google Scholar] [CrossRef]
- Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 922–928. [Google Scholar] [CrossRef]
- Le, T.; Duan, Y. PointGrid: A Deep Network for 3D Shape Understanding. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9204–9214. [Google Scholar] [CrossRef]
- Graham, B.; Engelcke, M.; Maaten, L. 3D Semantic Segmentation with Submanifold Sparse Convolutional Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 18–23 June 2018; pp. 9224–9232. [Google Scholar] [CrossRef]
- Choy, C.; Gwak, J.; Savarese, S. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, 15–20 June 2019; pp. 3070–3079. [Google Scholar] [CrossRef]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Zhang, K.; Hao, M.; Wang, J.; Chen, X.; Leng, Y.; de Silva, C.W.; Fu, C. Linked Dynamic Graph CNN: Learning through Point Cloud by Linking Hierarchical Features. In Proceedings of the 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Shanghai, China, 26–28 November 2021; pp. 7–12. [Google Scholar] [CrossRef]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. Adv. Neural Inf. Process. Syst. 2018, 31, 1–11. [Google Scholar]
- Boulch, A. ConvPoint: Continuous convolutions for point cloud processing. Comput. Graph. 2020, 88, 24–34. [Google Scholar] [CrossRef]
- Thomas, H.; Qi, C.R.; Deschaud, J.; Marcotegui, B.; Goulette, F.; Guibas, L. KPConv: Flexible and Deformable Convolution for Point Clouds. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Los Alamitos, CA, USA, 27 October–2 November 2019; pp. 6410–6419. [Google Scholar] [CrossRef]
- Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep Convolutional Networks on 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 9613–9622. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 16259–16268. [Google Scholar]
- López, A.; Jurado, J.M.; Jiménez-Pérez, J.R.; Feito, F.R. Generation of hyperspectral point clouds: Mapping, compression and rendering. Comput. Graph. 2022, 106, 267–276. [Google Scholar] [CrossRef]
- Brell, M.; Segl, K.; Guanter, L.; Bookhagen, B. 3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction. ISPRS J. Photogramm. Remote Sens. 2019, 149, 200–214. [Google Scholar] [CrossRef]
- Gader, P.; Zare, A.; Close, R.; Aitken, J.; Tuell, G. Muufl Gulfport Hyperspectral and Lidar Airborne Data Set; Technical Report REP-2013-570; University Florida: Gainesville, FL, USA, 2013. [Google Scholar]
- Weinmann, M.; Weinmann, M. Fusion of hyperspectral, multispectral, color and 3d point cloud information for the semantic interpretation of urban environments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1899–1906. [Google Scholar] [CrossRef]
- Weinmann, M.; Weinmann, M. Geospatial computer vision based on multi-modal data—How valuable is shape information for the extraction of semantic information? Remote Sens. 2017, 10, 2. [Google Scholar] [CrossRef]
- Chen, B.; Shi, S.; Sun, J.; Gong, W.; Yang, J.; Du, L.; Guo, K.; Wang, B.; Chen, B. Hyperspectral lidar point cloud segmentation based on geometric and spectral information. Opt. Express 2019, 27, 24043–24059. [Google Scholar] [CrossRef] [PubMed]
- Weidner, L.; Walton, G.; Krajnovich, A. Classifying rock slope materials in photogrammetric point clouds using robust color and geometric features. ISPRS J. Photogramm. Remote Sens. 2021, 176, 15–29. [Google Scholar] [CrossRef]
- Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [Google Scholar] [CrossRef]
- Decker, K.T.; Borghetti, B.J. Composite Style Pixel and Point Convolution-Based Deep Fusion Neural Network Architecture for the Semantic Segmentation of Hyperspectral and Lidar Data. Remote Sens. 2022, 14, 2113. [Google Scholar] [CrossRef]
- Decker, K.T.; Borghetti, B.J. Hyperspectral Point Cloud Projection for the Semantic Segmentation of Multimodal Hyperspectral and Lidar Data with Point Convolution-Based Deep Fusion Neural Networks. Appl. Sci. 2023, 13, 8210. [Google Scholar] [CrossRef]
- Xu, Y.; Du, B.; Zhang, L.; Cerra, D.; Pato, M.; Carmona, E.; Prasad, S.; Yokoya, N.; Hänsch, R.; Le Saux, B. Advanced Multi-Sensor Optical Remote Sensing for Urban Land Use and Land Cover Classification: Outcome of the 2018 IEEE GRSS Data Fusion Contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1709–1724. [Google Scholar] [CrossRef]
- Mitschke, I.; Wiemann, T.; Igelbrink, F.; Hertzberg, J. Hyperspectral 3D Point Cloud Segmentation Using RandLA-Net. In Proceedings of the International Conference on Intelligent Autonomous Systems, Zagreb, Croatia, 13–16 June 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 301–312. [Google Scholar]
- Jaegle, A.; Borgeaud, S.; Alayrac, J.; Doersch, C.; Ionescu, C.; Ding, D.; Koppula, S.; Zoran, D.; Brock, A.; Shelhamer, E.; et al. Perceiver IO: A General Architecture for Structured Inputs & Outputs. In Proceedings of the Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022. [Google Scholar]
- Li, P.; Gu, J.; Kuen, J.; Morariu, V.I.; Zhao, H.; Jain, R.; Manjunatha, V.; Liu, H. SelfDoc: Self-Supervised Document Representation Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2021; pp. 5652–5660. [Google Scholar]
- Hazirbas, C.; Ma, L.; Domokos, C.; Cremers, D. FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-Based CNN Architecture. In Proceedings of the Asian Conference on Computer Vision, Taipei, Taiwan, 20–24 November 2016. [Google Scholar]
- Li, J.; Hong, D.; Gao, L.; Yao, J.; Zheng, K.; Zhang, B.; Chanussot, J. Deep learning in multimodal remote sensing data fusion: A comprehensive review. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102926. [Google Scholar] [CrossRef]
- Chen, K.; Weinmann, M.; Gao, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M. Residual Shuffling Convolutional Neural Networks for Deep Semantic Image Segmentation Using Multi-Modal Data. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, IV-2, 65–72. [Google Scholar] [CrossRef]
- Chen, K.; Weinmann, M.; Sun, X.; Yan, M.; Hinz, S.; Jutzi, B.; Weinmann, M. Semantic Segmentation of Aerial Imagery via Multi-Scale Shuffling Convolutional Neural Networks with Deep Supervision. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2018, IV-1, 29–36. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Photogramm. Remote Sens. 2018, 140, 20–32. [Google Scholar] [CrossRef]
- Kieu, N.; Nguyen, K.; Sridharan, S.; Fookes, C. General-Purpose Multimodal Transformer meets Remote Sensing Semantic Segmentation. arXiv 2023, arXiv:2307.03388. [Google Scholar]
- Concha, D.T.; Maia, H.D.A.; Pedrini, H.; Tacon, H.; Brito, A.D.S.; Chaves, H.D.L.; Vieira, M.B. Multi-stream convolutional neural networks for action recognition in video sequences based on adaptive visual rhythms. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 473–480. [Google Scholar]
- Li, H.; Zech, J.; Hong, D.; Ghamisi, P.; Schultz, M.; Zipf, A. Leveraging openstreetmap and multimodal remote sensing data with joint deep learning for wastewater treatment plants detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102804. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ghamisi, P.; Rasti, B.; Wu, Z.; Shapiro, A.; Schultz, M.; Zipf, A. A multi-sensor fusion framework based on coupled residual convolutional neural networks. Remote Sens. 2020, 12, 2067. [Google Scholar] [CrossRef]
- Gao, J.; Li, P.; Chen, Z.; Zhang, J. A Survey on Deep Learning for Multimodal Data Fusion. Neural Comput. 2020, 32, 829–864. [Google Scholar] [CrossRef]
- Baltrusaitis, T.; Ahuja, C.; Morency, L.P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 423–443. [Google Scholar] [CrossRef]
- Landrieu, L.; Simonovsky, M. Large-scale point cloud semantic segmentation with superpoint graphs. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4558–4567. [Google Scholar]
- Hackel, T.; Wegner, J.D.; Schindler, K. Contour detection in unstructured 3D point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1610–1618. [Google Scholar]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the Importance of Initialization and Momentum in Deep Learning. In Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 28, pp. 1139–1147. [Google Scholar]
No | Feature | Description |
---|---|---|
1 | Sum | |
2 | Omnivariance | |
3 | Eigenentropy | |
4 | Anisotropy | |
5 | Planarity | |
6 | PCA 1 | |
7 | PCA 2 | |
8 | Linearity | |
9 | Surface Variation | |
10 | Sphericity | |
11 | Verticality | |
12, 13, 14 | 3 normal vectors |
Class | PointNet | PointNet++ | PointCNN | ConvPoint | DGCNN | PT | PCT | Ours |
---|---|---|---|---|---|---|---|---|
Saprolite | 38.5 | 39.1 | 46.0 | 41.9 | 39.4 | 40.5 | 39.3 | 68.1 |
Chert | 16.3 | 17.4 | 17.5 | 18.4 | 17.8 | 25.9 | 17.8 | 43.0 |
Sulfide | 50.1 | 50.0 | 45.9 | 46.8 | 45.9 | 41.8 | 49.3 | 68.2 |
Shale | 45.5 | 42.4 | 58.7 | 47.9 | 46.8 | 44.5 | 48.1 | 79.9 |
Purple Shale | 7.2 | 11.3 | 9.4 | 10.8 | 7.8 | 6.0 | 8.6 | 27.0 |
Mafic A | 56.2 | 60.4 | 55.5 | 57.8 | 58.9 | 63.1 | 57.5 | 68.9 |
Mafic B | 40.8 | 38.7 | 40.7 | 39.0 | 37.6 | 33.9 | 36.4 | 39.1 |
Felsic A | 24.2 | 20.2 | 27.4 | 31.7 | 18.9 | 24.0 | 18.9 | 52.7 |
Felsic B | 20.6 | 19.5 | 14.8 | 15.5 | 17.5 | 26.7 | 19.0 | 18.7 |
Felsic C | 35.8 | 33.5 | 23.9 | 38.0 | 28.3 | 24.0 | 30.2 | 48.2 |
OA | 43.2 | 43.0 | 47.3 | 45.1 | 42.7 | 45.3 | 43.3 | 66.5 |
bal-mF1 | 43.9 | 43.5 | 48.2 | 45.7 | 43.9 | 44.2 | 44.1 | 65.0 |
unbal-mF1 | 33.5 | 33.2 | 34.0 | 34.8 | 31.9 | 33.0 | 32.5 | 51.4 |
Class | PointNet | PointNet++ | PointCNN | ConvPoint | DGCNN | PT | PCT | Ours |
---|---|---|---|---|---|---|---|---|
Saprolite | 55.0 | 63.9 | 49.6 | 58.9 | 53.7 | 51.0 | 66.4 | 72.3 |
Chert | 32.7 | 44.2 | 15.3 | 21.0 | 37.2 | 26.8 | 43.7 | 43.9 |
Sulfide | 51.5 | 54.4 | 36.6 | 54.3 | 47.9 | 29.0 | 49.6 | 63.2 |
Shale | 72.3 | 76.4 | 73.7 | 74.3 | 76.3 | 71.8 | 78.1 | 82.0 |
Purple Shale | 27.8 | 14.8 | 10.8 | 11.7 | 16.3 | 6.9 | 20.2 | 36.8 |
Mafic A | 79.2 | 79.2 | 75.3 | 79.5 | 78.5 | 74.5 | 77.3 | 81.6 |
Mafic B | 77.8 | 76.4 | 49.8 | 76.3 | 76.6 | 42.6 | 74.7 | 73.8 |
Felsic A | 62.3 | 66.6 | 67.1 | 59.4 | 61.2 | 54.9 | 66.8 | 72.3 |
Felsic B | 47.8 | 59.0 | 4.3 | 42.9 | 52.9 | 2.7 | 52.7 | 58.9 |
Felsic C | 71.9 | 72.0 | 44.0 | 64.8 | 69.3 | 43.2 | 66.4 | 72.9 |
OA | 67.7 | 71.5 | 59.7 | 67.7 | 68.9 | 60.2 | 71.8 | 76.2 |
bal-mF1 | 69.5 | 72.3 | 62.0 | 69.6 | 70.1 | 59.6 | 71.9 | 76.2 |
unbal-mF1 | 57.8 | 60.7 | 42.7 | 54.3 | 57.0 | 40.3 | 59.6 | 65.8 |
Class | PointNet | PointNet++ | PointCNN | ConvPoint | DGCNN | PT | PCT | Ours |
---|---|---|---|---|---|---|---|---|
Saprolite | 60.3 | 64.0 | 52.7 | 55.1 | 62.8 | 43.2 | 68.5 | 82.4 |
Chert | 23.1 | 29.3 | 14.3 | 13.6 | 28.9 | 25.4 | 28.7 | 35.3 |
Sulfide | 51.9 | 47.3 | 39.5 | 49.0 | 51.0 | 25.4 | 49.4 | 55.5 |
Shale | 69.4 | 62.0 | 62.1 | 57.3 | 62.6 | 59.5 | 65.5 | 73.2 |
Purple Shale | 38.0 | 43.4 | 23.7 | 19.6 | 30.5 | 4.8 | 34.4 | 40.9 |
Mafic A | 73.1 | 73.8 | 63.0 | 69.6 | 70.2 | 70.2 | 72.1 | 76.6 |
Mafic B | 54.4 | 51.1 | 42.2 | 46.9 | 48.7 | 18.8 | 46.8 | 53.9 |
Felsic A | 57.7 | 53.9 | 57.9 | 53.4 | 52.0 | 42.5 | 57.2 | 56.2 |
Felsic B | 33.2 | 37.1 | 19.1 | 37.7 | 34.0 | 2.3 | 33.4 | 40.9 |
Felsic C | 51.2 | 52.0 | 28.1 | 51.3 | 50.6 | 34.5 | 50.5 | 56.8 |
OA | 62.1 | 60.7 | 51.8 | 55.4 | 59.1 | 51.2 | 61.2 | 67.7 |
bal-mF1 | 63.5 | 61.2 | 54.0 | 56.7 | 59.8 | 49.8 | 61.9 | 68.3 |
unbal-mF1 | 51.2 | 51.4 | 40.3 | 45.4 | 49.1 | 32.7 | 50.6 | 57.2 |
Class | Image-Based Graph | Image-Based MLP | Point-Based Graph |
---|---|---|---|
Saprolite | 31.6 | – | 72.3 |
Chert | 72.8 | 56.3 | 43.9 |
Sulfide | 42.1 | – | 63.2 |
Shale | 67.1 | 31.2 | 82.0 |
Purple Shale | 56.6 | – | 36.8 |
Mafic A | 60.9 | – | 81.6 |
Mafic B | 60.4 | – | 73.8 |
Felsic A | – | – | 72.3 |
Felsic B | 81.9 | 32.8 | 58.9 |
Felsic C | 77.8 | 21.5 | 72.9 |
OA | 67.3 | 37.1 | 76.2 |
bal-mF1 | 63.6 | 26.8 | 76.2 |
unbal-mF1 | 55.1 | 14.1 | 65.8 |
Features | OA (%) |
---|---|
RGB | 47.55 |
LWIR | 45.84 |
LWIR, RGB | 54.38 |
LWIR, RGB, geometric | 57.78 |
SWIR | 73.77 |
SWIR, RGB | 73.85 |
SWIR, RGB, geometric | 72.08 |
Features | Multi-Stream | OA (%) |
---|---|---|
LWIR, RGB, geometric | No | 57.78 |
LWIR, RGB, geometric | Yes | 64.27 |
SWIR, RGB, geometric | No | 72.08 |
SWIR, RGB, geometric | Yes | 75.45 |
Features | 3D CNN | OA (%) |
---|---|---|
LWIR, RGB, geometric | No | 64.27 |
LWIR, RGB, geometric | Yes | 66.46 |
SWIR, RGB, geometric | No | 75.45 |
SWIR, RGB, geometric | Yes | 76.21 |
Features | OA (%) |
---|---|
LWIR with XYZ | 54.38 |
LWIR with geometric features | 57.78 |
SWIR with XYZ | 73.85 |
SWIR with geometric features | 75.45 |
Backbone | OA (%) |
---|---|
LWIR with EdgeConv | 64.27 |
LWIR with SA | 54.65 |
SWIR with EdgeConv | 75.45 |
SWIR with SA | 65.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizaldy, A.; Afifi, A.J.; Ghamisi, P.; Gloaguen, R. Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network. Remote Sens. 2024, 16, 2336. https://doi.org/10.3390/rs16132336
Rizaldy A, Afifi AJ, Ghamisi P, Gloaguen R. Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network. Remote Sensing. 2024; 16(13):2336. https://doi.org/10.3390/rs16132336
Chicago/Turabian StyleRizaldy, Aldino, Ahmed Jamal Afifi, Pedram Ghamisi, and Richard Gloaguen. 2024. "Improving Mineral Classification Using Multimodal Hyperspectral Point Cloud Data and Multi-Stream Neural Network" Remote Sensing 16, no. 13: 2336. https://doi.org/10.3390/rs16132336