Improving Error Estimates for Evaluating Satellite-Based Atmospheric CO2 Measurement Concepts through Numerical Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumental Concept
2.2. Bayesian Estimation
2.3. Direct and Inverse Radiative Transfer Modelling
2.4. MODIS Data
2.5. Definition of the Case Database
- concentration: 394.88 ppm and concentration: 1850 ppb;
- Viewing zenith angle: nadir.
- Cirrus: cases with no cirrus, cases with one cirrus layer in the [394.5; 438.0] hPa layer with a cloud top height (CTH) of 8 km, and cases with one cirrus layer in the [247.87; 275.95] hPa layer with a CTH of 12 km (cir100 in OPAC model); The cloud optical depth (COD) is 0.05 or 0.10 at 1.064 μm.
- Aerosols: cases with an aerosol layer with an AOD of 0.05 or 0.15 at 1.064 μm. according to Figure 7, either according to the fine mode: OPAC MITR00 model (mineral transport—desert) in the layer [705.0; 783.0] hPa (at an altitude of about 3 km), or according to the coarse mode: OPAC WASO70 (water soluble—continental) or SOOT00 (soot) in the layer [848.69; 1013.25] hPa (at an altitude of about 1.5 km).
- Albedo: 3 values per frequency bands: SWIR 0.02, 0.15, or 0.30 and NIR 0.06, 0.3, or 0.5 according to the global distribution observed by MODIS.
- Sun zenith angle: 0°, 50°, or 70.
- Atmospheric profiles (defined for 20 pressure levels), three from TIGR database: Trop1—tropical, very hot and very humid; Trop3—tropical, hot and moderately humid; and MidLat2—temperate, more or less hot and moderately humid.
3. Results
3.1. Generation of Errors
3.2. Predictor and Predictant Selection for Random Error
3.3. Averaging Kernel
3.4. Mapping of the CO2 Errors Using MODIS Data
4. Discussion
4.1. Two-Step Procedure Relevance
4.2. Random Error and CAVK Versus Effective Error
4.3. Random Error Maps
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEMS | Atmospheric Environment Monitoring Satellite |
ALB | ALBedo |
ANR | Agence Nationale pour la Recherche |
AOD | Aerosol Optical Depth |
AVK | AVeraging Kernel |
BLUE | Best Linear Unbiased Estimator |
CAVK | Column AVeraging Kernel |
CNES | Centre National d’Etudes Spatiales |
CNSA | Chinese National Space Administration |
COD | Cirrus Optical Depth |
CO2M | Copernicus Carbon Dioxide Monitoring Mission |
CTH | Cirrus Top Height |
ESA | European Space Agency |
ISRF | Instrumental Spectral Response Function |
JAXA | Japanese Aerospace eXploration Agency |
FWHM | Full Width at Half Maximum |
GEISA | Gestion et Etudes des Informations Spectroscopiques Atmosphériques |
GHG | GreenHouse Gas |
GOSAT | Greenhouse gas Observation SATellite |
IPDA | Integrated Path Differential Absorption |
LIDORT | LInearised Discrete Ordinate Radiative Transfer |
LMD | Laboratoire de Météorologie Dynamique |
LSCE | Laboratoire des Sciences du Climat et de l’Environnement |
MITR | MIneral TRansported |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MRD | Mission Requirements Document |
NASA | National Aeronautics and Space Administration |
NIR | Near InfraRed |
OCO | Orbital Carbon Observatory |
SNR | Signal-to-Noise ratio |
SWIR | Short-Wave InfraRed |
SZA | Sun Zenith Angle |
TAS | Thales Alenia Space |
TCCON | Total Carbon Column Observing Network |
TIGR | Thermodynamic Initial Guess Retrieval |
TRACE | TRAcking Carbon Emission |
VZA | Viewing Zenith Angle |
WASO | WAter SOluble |
4A/OP | Automated Atmospheric Absorption Atlas/OPerational version |
5AI | Adaptable 4A Inversion |
Appendix A. Prerequisites for an Optimal Two-Step Procedure
References
- Wunch, D.; Toon, G.C.; Blavier, J.F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Frey, M.; Sha, M.K.; Hase, F.; Kiel, M.; Blumenstock, T.; Harig, R.; Surawicz, G.; Deutscher, N.M.; Shiomi, K.; Franklin, J.E.; et al. Building the COllaborative Carbon Column Observing Network (COCCON): Long-term stability and ensemble performance of the EM27/SUN Fourier transform spectrometer. Atmos. Meas. Tech. 2019, 12, 1513–1530. [Google Scholar] [CrossRef]
- Yokota, T.; Oguma, H.; Morino, I.; Higurashi, A.; Aoki, T.; Inoue, G. Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space. In Proceedings of the 4th International Asia-Pacific Environmental Remote Sensing Symposium 2004: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Honolulu, HI, USA, 8–12 November 2004; Tsay, S.C., Yokota, T., Ahn, M.H., Eds.; SPIE: Philadelphia, PA, USA, 2004; Volume 12. [Google Scholar] [CrossRef]
- Crisp, D. NASA Orbiting Carbon Observatory: Measuring the column averaged carbon dioxide mole fraction from space. J. Appl. Remote Sens. 2008, 2, 023508. [Google Scholar] [CrossRef]
- Taylor, T.E.; Eldering, A.; Merrelli, A.; Kiel, M.; Somkuti, P.; Cheng, C.; Rosenberg, R.; Fisher, B.; Crisp, D.; Basilio, R.; et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote Sens. Environ. 2020, 251, 112032. [Google Scholar] [CrossRef]
- Yang, D.; Liu, Y.; Cai, Z.; Chen, X.; Yao, L.; Lu, D. First Global Carbon Dioxide Maps Produced from TanSat Measurements. Adv. Atmos. Sci. 2018, 35, 621–623. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Yao, L.; Chen, X.; Cai, Z.; Yang, D.; Yin, Z.; Gu, S.; Tian, L.; Lu, N.; et al. The TanSat mission: Preliminary global observations. Sci. Bull. 2018, 63, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Boesch, H.; Liu, Y.; Somkuti, P.; Cai, Z.; Chen, X.; Noia, A.D.; Lin, C.; Lu, N.; Lyu, D.; et al. Toward High Precision XCO2 Retrievals From TanSat Observations: Retrieval Improvement and Validation Against TCCON Measurements. J. Geophys. Res. Atmos. 2020, 125, e2020JD032794. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Ma, X.; Liang, A.; Zhang, T.; Zhao, Y.; Zhang, M.; Gong, W. Performance Evaluation for China’s Planned CO2-IPDA. Remote Sens. 2017, 9, 768. [Google Scholar] [CrossRef]
- Pascal, V.; Buil, C.; Loesel, J.; Tauziede, L.; Jouglet, D.; Buisson, F. An improved microcarb dispersive instrumental concept for the measurement of greenhouse gases concentration in the atmosphere. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Spain, 6–10 October 2014; Cugny, B., Sodnik, Z., Karafolas, N., Eds.; SPIE: Philadelphia, PA, USA, 2017; Volume 11. [Google Scholar] [CrossRef]
- Meijer, Y. Copernicus CO2 Monitoring Mission Requirements Document; EOP-SM/3088/YM-ym, Issue 2.0; ESA: Montreal, QC, Canada, 2019; p. 82. [Google Scholar]
- Santaren, D.; Broquet, G.; Bréon, F.M.; Chevallier, F.; Siméoni, D.; Zheng, B.; Ciais, P. A local—To national-scale inverse modeling system to assess the potential of spaceborne CO2 measurements for the monitoring of anthropogenic emissions. Atmos. Meas. Tech. 2021, 14, 403–433. [Google Scholar] [CrossRef]
- Connor, B.J.; Siskind, D.E.; Tsou, J.J.; Parrish, A.; Remsberg, E.E. Ground-based microwave observations of ozone in the upper stratosphere and mesosphere. J. Geophys. Res. 1994, 99, 16757. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113, D05305. [Google Scholar] [CrossRef]
- Dogniaux, M.; Crevoisier, C.; Armante, R.; Capelle, V.; Delahaye, T.; Cassé, V.; De Mazière, M.; Deutscher, N.M.; Feist, D.G.; Garcia, O.E.; et al. The Adaptable 4A Inversion (5AI): Description and first XCO2 retrievals from Orbiting Carbon Observatory-2 (OCO-2) observations. Atmos. Meas. Tech. 2021, 14, 4689–4706. [Google Scholar] [CrossRef]
- Buchwitz, M.; Reuter, M.; Bovensmann, H.; Pillai, D.; Heymann, J.; Schneising, O.; Rozanov, V.; Krings, T.; Burrows, J.P.; Boesch, H.; et al. Carbon Monitoring Satellite (CarbonSat): Assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization. Atmos. Meas. Tech. 2013, 6, 3477–3500. [Google Scholar] [CrossRef]
- Beirle, S.; Lampel, J.; Lerot, C.; Sihler, H.; Wagner, T. Parameterizing the instrumental spectral response function and its changes by a super-Gaussian and its derivatives. Atmos. Meas. Tech. 2017, 10, 581–598. [Google Scholar] [CrossRef]
- Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A.C. Unified Notation for Data Assimilation: Operational, Sequential and Variational (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice). J. Meteorol. Soc. Jpn. Ser. II 1997, 75, 181–189. [Google Scholar] [CrossRef]
- Daley, R. Atmospheric Data Analysis; Cambridge Atmospheric and Space Science Series; Cambridge University Press: Cambridge, UK, 1991; p. 457. [Google Scholar]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Scott, N.A.; Chedin, A. A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas. J. Appl. Meteorol. Climatol. 1981, 20, 802–812. [Google Scholar] [CrossRef]
- Cheruy, F.; Scott, N.; Armante, R.; Tournier, B.; Chedin, A. Contribution to the development of radiative transfer models for high spectral resolution observations in the infrared. J. Quant. Spectrosc. Radiat. Transf. 1995, 53, 597–611. [Google Scholar] [CrossRef]
- Jacquinet-Husson, N.; Armante, R.; Scott, N.; Chédin, A.; Crépeau, L.; Boutammine, C.; Bouhdaoui, A.; Crevoisier, C.; Capelle, V.; Boonne, C.; et al. The 2015 edition of the GEISA spectroscopic database. J. Mol. Spectrosc. 2016, 327, 31–72. [Google Scholar] [CrossRef]
- Armante, R.; Scott, N.; Crevoisier, C.; Capelle, V.; Crepeau, L.; Jacquinet, N.; Chédin, A. Evaluation of spectroscopic databases through radiative transfer simulations compared to observations. Application to the validation of GEISA 2015 with IASI and TCCON. J. Mol. Spectrosc. 2016, 327, 180–192. [Google Scholar] [CrossRef]
- Spurr, R. Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative transfer treatment. J. Quant. Spectrosc. Radiat. Transf. 2002, 75, 129–175. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Chevallier, F.; Chédin, A.; Cheruy, F.; Morcrette, J.J. TIGR-like atmospheric-profile databases for accurate radiative-flux computation. Q. J. R. Meteorol. Soc. 2000, 126, 777–785. [Google Scholar] [CrossRef]
- Dogniaux, M.; Crevoisier, C.; Gousset, S.; Le Coarer, E.; Ferrec, Y.; Croizé, L.; Wu, L.; Hasekamp, O.; Sic, B.; Brooker, L. The Space Carbon Observatory (SCARBO) concept: Assessment of XCO2 and XCH4 retrieval performance. Atmos. Meas. Tech. 2022, 15, 4835–4858. [Google Scholar] [CrossRef]
- Vermote, E.F.; Roger, J.C.; Ray, J.P. MODIS Surface Reflectance User’s Guide; Version 1.4; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Levy, R.; Hsu, C.; MODIS Atmosphere Science Team. MOD04_L2 MODIS/Terra Aerosol 5-Min L2 Swath 10 km; NASA Level 1 and Atmosphere Archive and Distribution System Distributed Active Archive Center: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Chevallier, F. On the statistical optimality of CO2 atmospheric inversions assimilating CO2 column retrievals. Atmos. Chem. Phys. 2015, 15, 11133–11145. [Google Scholar] [CrossRef]
Band | ISRF FWHM | Sampling Step | Number of Samples | ||
---|---|---|---|---|---|
(nm) | (cm−1) | (nm) | (nm) | ||
NIR | 747–773 | 12,936–13,387 | 0.12 | 0.04 | 651 |
SWIR1 | 1590–1675 | 5970–6289 | 0.30 | 0.10 | 851 |
SWIR2 | 1990–2095 | 4773–5025 | 0.35 | 0.1166 | 901 |
Luminance in | SWIR2 | SWIR1 | NIR | |
---|---|---|---|---|
Photons/s/cm2/sr/nm | ||||
Threshold | A | 11.010 × 10−8 | 9.24 × 10−8 | 1.84 × 10−8 |
B | 146.78513 × 103 | 134.34701 × 103 | 7.04246 × 103 | |
Intermediate | A | 16.3 × 10−8 | 13.70 × 10−8 | 2.96 × 10−8 |
B | 146.78603 × 103 | 134.34702 × 103 | 10.56227 × 103 | |
Goal | A | 23.7 × 10−8 | 19.50 × 10−8 | 3.72 × 10−8 |
B | 307.04588 × 103 | 283.37915 × 103 | 15.33655 × 103 |
SNR | SWIR2 | SWIR1 | NIR |
---|---|---|---|
@Reference Luminance in | @1.0/@1.8 | @4.1/@2.1 | @20.0/@6.4 |
Photons/s/cm2/sr/nm | |||
Goal | 321/498 | 768/492 | 854/473 |
Intermediate | 293/442 | 673/443 | 763/424 |
Threshold | 217/337 | 528/338 | 601/333 |
CarbonSat | 205/—– | 323/—– | 334/—– |
CO2M | —–/400 | —–/400 | —–/330 |
Noise Level | Linear Regression Coefficients | |||||
---|---|---|---|---|---|---|
Threshold | −2.8210 | 1.3141 | 6.6354 | −5.3900 | 0.57202 | |
Intermediate | −6.6441 | 1.1260 | 10.720 | −6.7136 | 0.91118 | |
Goal | −7.4981 | 1.8386 | 12.284 | −7.4414 | 0.95628 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, B.B.; Cassé, V.; Chomette, O.; Crevoisier, C. Improving Error Estimates for Evaluating Satellite-Based Atmospheric CO2 Measurement Concepts through Numerical Simulations. Remote Sens. 2024, 16, 2452. https://doi.org/10.3390/rs16132452
Silveira BB, Cassé V, Chomette O, Crevoisier C. Improving Error Estimates for Evaluating Satellite-Based Atmospheric CO2 Measurement Concepts through Numerical Simulations. Remote Sensing. 2024; 16(13):2452. https://doi.org/10.3390/rs16132452
Chicago/Turabian StyleSilveira, Bruna Barbosa, Vincent Cassé, Olivier Chomette, and Cyril Crevoisier. 2024. "Improving Error Estimates for Evaluating Satellite-Based Atmospheric CO2 Measurement Concepts through Numerical Simulations" Remote Sensing 16, no. 13: 2452. https://doi.org/10.3390/rs16132452