Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs)
Abstract
:1. Introduction
2. Brief Descriptions of On-Orbit Radiometric Calibrations
2.1. On-Orbit Solar Calibration
2.2. On-Orbit Lunar Calibration
2.3. On-Orbit RSB Stability Monitoring with DCC Trends
- DCC pixels should have latitudes at ±25 degrees.
- DCC pixels should have brightness temperatures less than 205 K in the VIIRS M15 band with a center wavelength at 10.7 µm.
- The standard deviation of the temperature (in band M15) of the subject pixel and its eight neighboring pixels should be less than 1 K.
- The standard deviation of reflectance of the subject pixel and its eight neighboring pixels should be less than 3 percent.
- The solar zenith angle of the subject pixels should be less than 40 degrees.
- The viewing zenith angle of the subject pixel should be less than 35 degrees.
3. Results
3.1. Initial SD Degradation (H-Factor) Estimates
3.2. Operational F-Factors for VIIRS SDR Product Generation in VISNIR Bands
3.3. Operational F-Factors for VIIRS SDR Product Generation in SWIR Bands
3.4. Second MMOG Event
3.5. Validation of Operational F-Factors from the Long-Term DCC Trends
3.6. H-Factor Update Using Yaw and One-Year On-Orbit SDSM Data
3.7. The Offline SD F-Factors
3.8. Comparisons of the Lunar and SD F-Factors
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Disclaimer
Conflicts of Interest
Appendix A
Appendix A.1. Initial H-Factor Update from the Yaw Maneuvers
# | Date | Predicted Time (UTC) | Orbit | Predicted Solar Azimuth (deg) | Yaw Angle (deg) | Simulated Solar Azimuth (deg) |
---|---|---|---|---|---|---|
1 | 6 March 2023 | 13:30:10 | 1649 | 19.7421 | −5.14 | 14.6 |
2 | 6 March 2023 | 15:11:41 | 1650 | 19.7423 | −4.11 | 15.63 |
3 | 6 March 2023 | 16:53:11 | 1651 | 19.743 | −3.09 | 16.66 |
4 | 6 March 2023 | 18:34:41 | 1652 | 19.7433 | −2.06 | 17.69 |
5 | 6 March 2023 | 20:16:12 | 1653 | 19.7436 | −1.03 | 18.71 |
6 March 2023 | 21:57:42 | 1654 | 19.7443 | 0.0 | 19.74 | |
6 | 6 March 2023 | 23:39:12 | 1655 | 19.7444 | 1.03 | 20.77 |
7 | 7 March 2023 | 1:20:43 | 1656 | 19.745 | 2.06 | 21.8 |
8 | 7 March 2023 | 3:02:13 | 1657 | 19.7455 | 3.08 | 22.83 |
9 | 7 March 2023 | 4:43:43 | 1658 | 19.7456 | 4.11 | 23.86 |
10 | 7 March 2023 | 6:25:14 | 1659 | 19.7463 | 5.14 | 24.89 |
11 | 7 March 2023 | 8:06:44 | 1660 | 19.7468 | 6.17 | 25.91 |
12 | 7 March 2023 | 9:48:15 | 1661 | 19.7469 | 7.2 | 26.94 |
13 | 7 March 2023 | 11:29:45 | 1662 | 19.7477 | 8.22 | 27.97 |
14 | 7 March 2023 | 13:11:15 | 1663 | 19.748 | 9.25 | 29.0 |
Appendix A.2. SDSM Sun Transmittance Screen (τSDSM) LUT Update Using One-Year On-Orbit SDSM Data
References
- Cao, C.; De Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef]
- Oudrari, H.; McIntire, J.; Xiong, X.; Butler, J.; Lee, S.; Lei, N.; Schwarting, T.; Sun, J. Prelaunch Radiometric Characterization and Calibration of the S-NPP VIIRS Sensor. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2195–2210. [Google Scholar] [CrossRef]
- Moyer, D.; Angal, A.; Oudrari, H.; Haas, E.; Ji, Q.; De Luccia, F.; Xiong, X. JPSS-1 VIIRS Prelaunch Reflective Solar Band Testing and Performance. Remote Sens. 2022, 14, 5113. [Google Scholar] [CrossRef]
- Moyer, D.; Angal, A.; Ji, Q.; McIntire, J.; Xiong, X. JPSS-2 VIIRS Pre-Launch Reflective Solar Band Testing and Performance. Remote Sens. 2022, 14, 6353. [Google Scholar] [CrossRef]
- Choi, T.; Blonski, S.; Shao, X.; Wang, W.; Uprety, S.; Ahmad, K.; Zhang, B.; Bai, Y. On-orbit Post Launch Test (PLT) Plans for the Joint Polar Satellite System (JPSS)-2 Visible Infrared Imaging Radiometer Suite (VIIRS) Sensor Data Record (SDR) Product. In Proceedings of the American Meteorological Society 2023, Denver, CO, USA, 12 January 2023. [Google Scholar]
- Choi, T.; Blonski, S.; Shao, X.; Wang, W.; Ahmad, K.; Bai, Y.; Pillai, P. Initial Status of Joint Polar Satellite System (JPSS)-2 Visible Infrared Imaging Radiometer Suite (VIIRS) On-orbit Calibration and Performance. In Proceedings of the Joint Agency Commercial Imagery Evaluation (JACIE) 2023, Reston, VA, USA, 27–30 March 2023. [Google Scholar]
- Xiong, X.; Angal, A.; Sun, J.; Lei, N.; Twedt, K.; Chen, H.; Chiang, K.V.; Kimura, T.; Babu, S.R.; Hélière, A. An overview of NOAA-21 VIIRS early on-orbit calibration and performance. Sens. Syst. Next-Gener. XXVII 2023, 12729, 308–317. [Google Scholar]
- Xiong, X.; Angal, A.; Sun, J.; Lei, N.; Twedt, K.; Chiang, K.-F. Early results from NOAA-21 (JPSS-2) VIIRS on-orbit calibration. In Proceedings of the IGARSS 2023, Pasadena, CA, USA, 16–21 July 2023. [Google Scholar]
- Zhou, L.; Reed, B.E.; Dunlap, L.; Young, A.; Liu, X.; Divakarla, M.G. Updates on Joint Polar Satellite System (JPSS) and Low Earth Orbit (LEO) data products. In Proceedings of the American Meteological Society, Denver, CO, USA, 8–12 January 2023. [Google Scholar]
- Moeller, C.; Schwarting, T.; McCorkel, J.; Moyer, D.; Mcintire, J. JPSS-2 VIIRS version 2 at-launch relative spectral response characterization. In Proceedings of the Earth Observing Systems XXIV, 111270D, San Diego, CA, USA, 9 September 2019. [Google Scholar]
- Choi, T.; Blonski, S.; Shao, X.; Wang, W. Preliminary assessment of the NOAA-21 VIIRS on-orbit Reflective Solar Band calibration and performance. In Proceedings of the Earth Observing Systems XXVIII, San Diego, CA, USA, 24 August 2023. [Google Scholar]
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Baker, N.; Kilcoyne, H. Joint Polar Satellite System (JPSS) VIIRS Radiometric Calibration Algorithm Theoretical Basis Document (ATBD); Goddard Space Flight Center: Greenbelt, MA, USA, 2013. [Google Scholar]
- Choi, T.; Cao, C.; Blonski, S.; Wang, W.; Uprety, S.; Shao, X. NOAA-20 VIIRS Reflective Solar Band Postlaunch Calibration Updates Two Years In-Orbit. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7633–7642. [Google Scholar] [CrossRef]
- Choi, T.; Cao, C.; Shao, X.; Wang, W. S-NPP VIIRS Lunar Calibrations over 10 Years in Reflective Solar Bands (RSB). Remote Sens. 2022, 14, 3367. [Google Scholar] [CrossRef]
- Choi, T.; Shao, X.; Cao, C. On-orbit radiometric calibration of Suomi NPP VIIRS reflective solar bands using the Moon and solar diffuser. Appl. Opt. 2018, 57, 9533–9542. [Google Scholar] [CrossRef]
- Shao, X.; Liu, T.-C.; Xiong, X.; Cao, C.; Choi, T.; Angal, A. Surface Roughness-Induced Spectral Degradation of Multi-Spaceborne Solar Diffusers Due to Space Radiation Exposure. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8658–8671. [Google Scholar] [CrossRef]
- Shao, X.; Cao, C.; Liu, T.-C. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering. Remote Sens. 2016, 8, 254. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X. Suomi NPP VIIRS Solar Diffuser BRDF Degradation Factor at Short-Wave Infrared Band Wavelengths. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6212–6216. [Google Scholar] [CrossRef]
- Choi, T.; Cao, C. S-NPP VIIRS On-Orbit Calibration Coefficient Improvements With Yaw Maneuver Reanalysis. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7460–7465. [Google Scholar] [CrossRef]
- Choi, T.; Shao, X.; Blonski, S.; Cao, C. On-orbit NOAA-20 VIIRS solar diffuser bidirectional reflectance distribution function and screen transmittance characterization using yaw manoeuvres and regular on-orbit SDSM data. Int. J. Remote Sens. 2020, 41, 6503–6526. [Google Scholar] [CrossRef]
- Choi, T.; Blonski, S.; Cao, C. Initial on-orbit radiometric calibration of the NOAA-20 VIIRS Reflective Solar Bands. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 11–15 August 2019; p. 11. [Google Scholar]
- Lei, N.; Chen, X.; Xiong, X. Determination of the SNPP VIIRS SDSM Screen Relative Transmittance From Both Yaw Maneuver and Regular On-Orbit Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1390–1398. [Google Scholar] [CrossRef]
- JGS Engineering Services. Joint Polar Satellite System (JPSS) Ground Segment Data Product Specification (GSegDPS); No. 474-01543; Goddard Space Flight Center: Greenbelt, MD, USA, 2019. [Google Scholar]
- Sun, J.; Wang, M. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser. Appl. Opt. 2015, 54, 7210–7223. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M. Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using a solar diffuser stability monitor. Appl. Opt. 2014, 53, 8571–8584. [Google Scholar] [CrossRef]
- Choi, T.; Cao, C.; Blonski, S.; Shao, X.; Wang, W. NOAA-20 VIIRS On-Orbit Reflective Solar Band Radiometric Calibration Five-Year Update. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–10. [Google Scholar] [CrossRef]
- Choi, T.; Cao, C. NOAA-20 VIIRS Relative Spectral Response Effects on Solar Diffuser Degradation and On-Orbit Radiometric Calibration. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–7. [Google Scholar] [CrossRef]
- Rausch, K.; Houchin, S.; Cardema, J.; Moy, G.; Haas, E.; De Luccia, F.J. Automated calibration of the Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands. J. Geophys. Res. Atmos. 2013, 118, 13434–413442. [Google Scholar] [CrossRef]
- Moy, G.; Rausch, K.; Haas, E.; Wilkinson, T.; Cardema, J.; De Luccia, F. Mission history of reflective solar band calibration performance of VIIRS. In Proceedings of the Earth Observing Systems XX, San Diego, CA, USA, 10–13 August 2015. [Google Scholar]
- Lei, N.; Xiong, X.; Wang, Z.; Li, S.; Twedt, K. SNPP VIIRS RSB on-orbit radiometric calibration algorithms Version 2.0 and the performances, part 1: The algorithms. J. Appl. Remote Sens. 2020, 14, 047501. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1537–1543. [Google Scholar] [CrossRef]
- Murgai, V.; Klein, S.N. Spectralon Solar Diffuser BRDF extrapolation to 2.25 microns for JPSS J1, J2, and J3. In Proceedings of the Earth Observing Systems XXIV, San Diego, CA, USA, 11–15 August 2019. [Google Scholar]
- Choi, T.; Shao, X.; Cao, C.; Weng, F. Radiometric Stability Monitoring of the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Reflective Solar Bands Using the Moon. Remote Sens. 2015, 8, 15. [Google Scholar] [CrossRef]
- Wilson, T.; Xiong, X. Planning lunar observations for satellite missions in low-Earth orbit. J. Appl. Remote Sens. 2019, 13, 024513. [Google Scholar] [CrossRef]
- Wilson, T.; Xiong, X. Scheduling observations of celestial objects for Earth observing sensor calibration. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XX, Edinburgh, UK, 26–28 September 2016; Volume 10000. [Google Scholar]
- Doelling, D.R.; Morstad, D.; Scarino, B.R.; Bhatt, R.; Gopalan, A. The Characterization of Deep Convective Clouds as an Invariant Calibration Target and as a Visible Calibration Technique. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1147–1159. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.; Wu, A.; Xiong, X.; Scarino, B.; Haney, C.; Gopalan, A. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets. Remote Sens. 2014, 6, 2809–2826. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. DCC Radiometric Sensitivity to Spatial Resolution, Cluster Size, and LWIR Calibration Bias Based on VIIRS Observations. J. Atmos. Ocean. Technol. 2015, 32, 48–60. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. Evaluation of NOAA-20 VIIRS Reflective Solar Bands Early On-Orbit Performance Using Daily Deep Convective Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3975–3985. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. Monitoring the NOAA Operational VIIRS RSB and DNB Calibration Stability Using Monthly and Semi-Monthly Deep Convective Clouds Time Series. Remote Sens. 2016, 8, 32. [Google Scholar] [CrossRef]
- Blonski, S.; Cao, C. Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing. Remote Sens. 2015, 7, 16131–16149. [Google Scholar] [CrossRef]
- NESDIS; NOAA. Joint Polar Satellite System (JPSS) VIIRS Geolocation Algorithm Theoretical Basis Document (ATBD). Available online: https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-004_JPSS_ATBD_VIIRS-Geolocation_B.pdf (accessed on 15 May 2024).
- Wang, W.; Blonski, S.; Choi, T.; Xiong, X.; Gu, X.; Czapla-Myers, J.S. Evaluation of NOAA-21 VIIRS thermal emissive bands early on-orbit calibration performance. In Proceedings of the Earth Observing Systems XXVIII, San Diego, CA, USA, 22–24 August 2023. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Stone, T.; Kieffer, H.H. Absolute irradiance of the moon for on-orbit calibration. In Proceedings of the SPIE—The International Society for Optical Engineering, Seattle, WA, USA, 24 September 2002; pp. 211–221. [Google Scholar]
Band | Center Wavelength [nm] | Full Width at Half Maximum [nm] | Thuillier Based Esun [12] W/[m2 µm sr] | Spatial Resolution at Nadir [m] | Gain State |
---|---|---|---|---|---|
I1 | 641.1 | 79.3 | 1592.5 | 375 | Single |
I2 | 868.0 | 38.6 | 950.2 | 375 | Single |
I3 | 1612.9 | 63.1 | 245.6 | 375 | Single |
M1 | 411.0 | 19.5 | 1733.5 | 750 | High/Low |
M2 | 444.9 | 17.0 | 1940.1 | 750 | High/Low |
M3 | 488.3 | 20.1 | 1983.9 | 750 | High/Low |
M4 | 555.3 | 21.3 | 1833.9 | 750 | High/Low |
M5 | 671.4 | 21.1 | 1502.5 | 750 | High/Low |
M6 | 747.3 | 14.8 | 1273.4 | 750 | Single |
M7 | 868.3 | 38.6 | 949.9 | 750 | High/Low |
M8 | 1241.3 | 20.6 | 454.7 | 750 | Single |
M9 | 1382.0 | 15.3 | 362.8 | 750 | Single |
M10 | 1613.1 | 63.1 | 245.6 | 750 | Single |
M11 | 2251.7 | 48.0 | 78.1 | 750 | Single |
Date | Time [UTC] | Lunar Phase Angle |
---|---|---|
2 March 2023 | 01:23:47 | −59.43 |
1 April 2023 * | 10:42:07 | −52.97 |
1 May 2023 | 08:05:33 | −51.13 |
31 May 2023 * | 00:27:01 | −50.99 |
28 June 2023 * | 20:29:43 | −59.99 |
23 November 2023 | 08:47:57 | −50.84 |
22 December 2023 | 18:00:20 | −50.88 |
21 January 2024 | 06:41:33 | −50.85 |
19 February 2024 | 09:17:30 | −56.60 |
20 March 2024 | 03:14:31 | −55.62 |
LUT Deployment Date | Notes |
---|---|
12 January 2023 | Initial on-orbit update for VISNIR bands |
23 March 2023 | Initial on-orbit update for SWIR bands |
20 April 2023 | First update for correcting fast changes in SWIR bands |
11 May 2023 | Updated to catch up with fast SWIR band degradation; added bias correction in band I3 (+1.5%), M8 (+2%), M10 (+2.5%), and M11 (+4%) to better match up with NOAA-20 VIIRS |
1 June 2023 | Updated SWIR band changes |
23 June 2023 | Updated SWIR band changes; bias correction added in M9 (+2%) |
27 July 2023 | Updated SWIR band changes |
17 August 2023 | Switched to automated RSBautoCal for SWIR band calibration |
1 March 2024 | SWIR F-factors were set to the initial constant levels after the completion of the second MMOG |
Bands | Refl. Avg | Sd (%) | Max-Min (%) | Trd (±95CI, %/yr) | Zm-k (M-K Test) | Trend Since |
---|---|---|---|---|---|---|
M1 | 0.905 | 0.9 | 5.245 | 0.61 ± 0.31% | 3.58 | Upward trend (since 10 February 2023) |
M2 | 0.902 | 0.9 | 5.121 | 0.48 ± 0.31% | 3.29 | Upward trend (since 10 February 2023) |
M3 | 0.905 | 1 | 5.867 | 0.88 ± 0.32% | 5.01 | Upward trend (since 10 February 2023) |
M4 | 0.882 | 1 | 5.955 | 0.56 ± 0.37% | 3.04 | Upward trend (since 10 February 2023) |
M5 | 0.902 | 0.9 | 5.257 | 0.53 ± 0.31% | 3.01 | Upward trend (since 10 February 2023) |
M7 | 0.878 | 0.7 | 3.765 | 0.28 ± 0.23% | 2.43 | Upward trend (since 10 February 2023) |
I1 | 0.88 | 0.9 | 5.432 | 0.70 ± 0.31% | 4.14 | Upward trend (since 10 February 2023) |
I2 | 0.879 | 0.7 | 4.117 | 0.31 ± 0.23% | 2.26 | Upward trend (since 10 February 2023) |
M8 | 0.664 | 1 | 5.802 | −0.89 ± 0.64% | −2.49 | Downward trend (since 23 June 2023) |
M9 (+0.05) | 0.591 | 2.1 | 11.892 | −0.76 ± 1.35% | −0.37 | Insignificant (since 23 June 2023) |
M10 (+0.35) | 0.233 | 2.6 | 13.694 | −1.57 ± 1.63% | −1.98 | Downward trend (since 23 June 2023) |
M11 (+0.25) | 0.356 | 2.1 | 11.348 | −1.33 ± 1.30% | −2.02 | Downward trend (since 23 June 2023) |
I3 (+0.33) | 0.231 | 2.6 | 13.818 | −1.49 ± 1.64% | −1.93 | Insignificant (since 23 June 2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, T.; Cao, C.; Blonski, S.; Shao, X.; Wang, W.; Ahmad, K. Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs). Remote Sens. 2024, 16, 2737. https://doi.org/10.3390/rs16152737
Choi T, Cao C, Blonski S, Shao X, Wang W, Ahmad K. Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs). Remote Sensing. 2024; 16(15):2737. https://doi.org/10.3390/rs16152737
Chicago/Turabian StyleChoi, Taeyoung, Changyong Cao, Slawomir Blonski, Xi Shao, Wenhui Wang, and Khalil Ahmad. 2024. "Preliminary Assessment of On-Orbit Radiometric Calibration Challenges in NOAA-21 VIIRS Reflective Solar Bands (RSBs)" Remote Sensing 16, no. 15: 2737. https://doi.org/10.3390/rs16152737