Assessment of Rooftop Photovoltaic Potential Considering Building Functions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Satellite Imagery
2.1.3. Building Footprint
2.1.4. Urban Function
2.1.5. Solar Radiation
2.2. Recognition of Building Functions
2.2.1. Pre-Processing for Building Function Recognition
2.2.2. Construction of Datasets Based on Built Environment and Location Awareness
2.2.3. Training and Application of Building Function Recognition Model
2.2.4. Performance Evaluation of Building Function Recognition Model
2.3. Assessment of RPV Potential
2.3.1. Assessment of RPV Technical Potential
2.3.2. Assessment of RPV Economic Potential
3. Results
3.1. Building Function Recognition
3.1.1. Experimental Configuration
3.1.2. Deep Learning Model Construction and Comparison
3.1.3. Building Function Distribution Analysis
3.2. RPV Potential Assessment
3.2.1. RPV Technical Potential Assessment
3.2.2. RPV Economic Potential Assessment
4. Discussion
4.1. Exploitation of Theoretical Potential
4.2. Limitations and Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heubaum, H.; Biermann, F. Integrating global energy and climate governance: The changing role of the International Energy Agency. Energy Policy 2015, 87, 229–239. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A.A.; Kim, K.-H. Solar energy: Potential and future prospects. Renew. Sustain. Energy Rev. 2018, 82, 894–900. [Google Scholar] [CrossRef]
- McCollum, D.; Gomez Echeverri, L.; Riahi, K.; Parkinson, S. Sdg7: Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. 2017. Available online: https://pure.iiasa.ac.at/id/eprint/14621/1/SDGs-interactions-7-clean-energy.pdf (accessed on 20 May 2023).
- Xie, H.; Zhang, C.; Hao, B.; Liu, S.; Zou, K. Review of solar obligations in China. Renew. Sustain. Energy Rev. 2012, 16, 113–122. [Google Scholar] [CrossRef]
- Bódis, K.; Kougias, I.; Jäger-Waldau, A.; Taylor, N.; Szabó, S. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renew. Sustain. Energy Rev. 2019, 114, 109309. [Google Scholar] [CrossRef]
- Zhong, T.; Zhang, Z.; Chen, M.; Zhang, K.; Zhou, Z.; Zhu, R.; Wang, Y.; Lü, G.; Yan, J. A city-scale estimation of rooftop solar photovoltaic potential based on deep learning. Appl. Energy 2021, 298, 117132. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, M.; Zhong, T.; Zhu, R.; Qian, Z.; Zhang, F.; Yang, Y.; Zhang, K.; Santi, P.; Wang, K.; et al. Carbon mitigation potential afforded by rooftop photovoltaic in China. Nat. Commun. 2023, 14, 2347. [Google Scholar] [CrossRef]
- Brovelli, M.A.; Zamboni, G. A new method for the assessment of spatial accuracy and completeness of OpenStreetMap building footprints. ISPRS Int. J. Geo-Inf. 2018, 7, 289. [Google Scholar] [CrossRef]
- Zhang, Z.; Qian, Z.; Zhong, T.; Chen, M.; Zhang, K.; Yang, Y.; Zhu, R.; Zhang, F.; Zhang, H.; Zhou, F.; et al. Vectorized rooftop area data for 90 cities in China. Sci. Data 2022, 9, 66. [Google Scholar] [CrossRef]
- Esch, T.; Brzoska, E.; Dech, S.; Leutner, B.; Palacios-Lopez, D.; Metz-Marconcini, A.; Marconcini, M.; Roth, A.; Zeidler, J. World Settlement Footprint 3D-A first three-dimensional survey of the global building stock. Remote Sens. Environ. 2022, 270, 112877. [Google Scholar] [CrossRef]
- Qian, Z.; Chen, M.; Sun, Z.; Zhang, F.; Xu, Q.; Guo, J.; Xie, Z.; Zhang, Z. Simultaneous extraction of spatial and attributional building information across large-scale urban landscapes from high-resolution satellite imagery. Sustain. Cities Soc. 2024, 106, 105393. [Google Scholar] [CrossRef]
- Qian, Z.; Chen, M.; Zhong, T.; Zhang, F.; Zhu, R.; Zhang, Z.; Zhang, K.; Sun, Z.; Lü, G. Deep Roof Refiner: A detail-oriented deep learning network for refined delineation of roof structure lines using satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102680. [Google Scholar] [CrossRef]
- Gernaat, D.E.; de Boer, H.-S.; Dammeier, L.C.; van Vuuren, D.P. The role of residential rooftop photovoltaic in long-term energy and climate scenarios. Appl. Energy 2020, 279, 115705. [Google Scholar] [CrossRef]
- Cao, R.; Tu, W.; Yang, C.; Li, Q.; Liu, J.; Zhu, J.; Zhang, Q.; Li, Q.; Qiu, G. Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS J. Photogramm. Remote Sens. 2020, 163, 82–97. [Google Scholar] [CrossRef]
- Neupane, B.; Horanont, T.; Aryal, J. Deep learning-based semantic segmentation of urban features in satellite images: A review and meta-analysis. Remote Sens. 2021, 13, 808. [Google Scholar] [CrossRef]
- Qian, J.; Liu, Z.; Du, Y.; Liang, F.; Yi, J.; Ma, T.; Pei, T. Quantify city-level dynamic functions across China using social media and POIs data. Comput. Environ. Urban Syst. 2021, 85, 101552. [Google Scholar] [CrossRef]
- Psyllidis, A.; Gao, S.; Hu, Y.; Kim, E.K.; McKenzie, G.; Purves, R.; Yuan, M.; Andris, C. Points of Interest (POI): A commentary on the state of the art, challenges, and prospects for the future. Comput. Urban Sci. 2022, 2, 20. [Google Scholar] [CrossRef]
- Qian, Z.; Liu, X.; Tao, F.; Zhou, T. Identification of urban functional areas by coupling satellite images and taxi GPS trajectories. Remote Sens. 2020, 12, 2449. [Google Scholar] [CrossRef]
- Shanghai Municipal Bureau of Statistics. Shanghai Statistical Yearbook; Shanghai Municipal Bureau of Statistics: Shanghai, China, 2023.
- Cui, X.; Wang, X. Urban land use change and its effect on social metabolism: An empirical study in Shanghai. Habitat Int. 2015, 49, 251–259. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Li, Y.; Wu, Q.; Wu, B.; Huang, Y.; Wu, S.; Yu, S.; Mao, W.; Zhao, F.; et al. Assessing the potential and utilization of solar energy at the building-scale in Shanghai. Sustain. Cities Soc. 2022, 82, 103917. [Google Scholar] [CrossRef]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Nanjing Normal University Lab of Smart City Sensing Simulation. Vectorized Rooftop Area Data for 90 Cities in China (2020); National Tibetan Plateau Data Center: Beijing, China, 2021. [Google Scholar]
- Hu, Y.; Gao, S.; Janowicz, K.; Yu, B.; Li, W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 2015, 54, 240–254. [Google Scholar] [CrossRef]
- Wenjun, T. Dataset of High-Resolution (3 hour, 10 km) Global Surface Solar Radiation (1983–2018); National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Tang, W.; Yang, K.; Qin, J.; Li, X.; Niu, X. A 16-year dataset (2000–2015) of high-resolution (3 h, 10 km) global surface solar radiation. Earth Syst. Sci. Data 2019, 11, 1905–1915. [Google Scholar] [CrossRef]
- Hoffmann, E.J.; Wang, Y.; Werner, M.; Kang, J.; Zhu, X.X. Model fusion for building type classification from aerial and street view images. Remote Sens. 2019, 11, 1259. [Google Scholar] [CrossRef]
- Xin-gang, Z.; Yi-min, X. The economic performance of industrial and commercial rooftop photovoltaic in China. Energy 2019, 187, 115961. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, W.; Gao, J. Efficient model selection for Support Vector Machine with Gaussian kernel function. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 40–45. [Google Scholar]
- Chen, Z.; Duan, J.; Kang, L.; Qiu, G. Class-imbalanced deep learning via a class-balanced ensemble. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5626–5640. [Google Scholar] [CrossRef]
- Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine learning with oversampling and undersampling techniques: Overview study and experimental results. In Proceedings of the 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 7–9 April 2020; pp. 243–248. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Carletta, J. Assessing agreement on classification tasks: The kappa statistic. arXiv 1996, arXiv:cmp-lg/9602004. [Google Scholar]
- Carvalho, F.; Guedes, G.P. TF-IDFC-RF: A novel supervised term weighting scheme. arXiv 2020, arXiv:2003.07193. [Google Scholar]
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% clean and renewable wind, water, and sunlight all-sector energy roadmaps for 139 countries of the world. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef]
- Wang, M.; Mao, X.; Gao, Y.; He, F. Potential of carbon emission reduction and financial feasibility of urban rooftop photovoltaic power generation in Beijing. J. Clean. Prod. 2018, 203, 1119–1131. [Google Scholar] [CrossRef]
- Yingli Solar. YGE 60 Cell Series 2. Proven Performance and Versatility; Yingli Solar: Baoding, China, 2017. [Google Scholar]
- Yan, J.; Yang, Y.; Elia Campana, P.; He, J. City-level analysis of subsidy-free solar photovoltaic electricity price, profits and grid parity in China. Nat. Energy 2019, 4, 709–717. [Google Scholar] [CrossRef]
- Yang, C.-J. Reconsidering solar grid parity. Energy Policy 2010, 38, 3270–3273. [Google Scholar] [CrossRef]
- China Photovoltaic Industry Association. The Development Roadmap of China’s Photovoltaic Industry; China Photovoltaic Industry Association: Beijing, China, 2020. [Google Scholar]
- Shanghai Municipal Development & Reform Commission. Notice on Transmitting the Circular of the National Development and REFORM Commission on Further Deepening the Market-Based Reform of Feed-In Tariffs for Coal-Fired Power Generation; Shanghai Municipal Development & Reform Commission: Shanghai, China, 2021.
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Shanghai Municipal Commission of Economy and Informatization. Shanghai Power Operation in December 2020; Shanghai Municipal Commission of Economy and Informatization: Shanghai, China, 2020.
- Ye, L.-C.; Rodrigues, J.F.; Lin, H.X. Analysis of feed-in tariff policies for solar photovoltaic in China 2011–2016. Appl. Energy 2017, 203, 496–505. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Li, Y. Identification of urban functional areas and their mixing degree using point of interest analyses. Land 2022, 11, 996. [Google Scholar] [CrossRef]
- Ye, C.; Zhang, F.; Mu, L.; Gao, Y.; Liu, Y. Urban function recognition by integrating social media and street-level imagery. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 1430–1444. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, Y.; Edwards, D.; Hosseini, M.R. Improving the energy production of roof-top solar PV systems through roof design. In Building Simulation; Springer: Berlin/Heidelberg, Germany, 2020; pp. 475–487. [Google Scholar]
- Walch, A.; Castello, R.; Mohajeri, N.; Scartezzini, J.-L. Big data mining for the estimation of hourly rooftop photovoltaic potential and its uncertainty. Appl. Energy 2020, 262, 114404. [Google Scholar] [CrossRef]
Building Functional Types | AOI Classes |
---|---|
Residential | House, apartment, dormitory |
Industrial | Warehouse, factory, industrial park |
Commercial | Hotel, retail store, restaurant, commercial training institute, bank, recreation service, pharmacy, auto service, office, financial center, law office |
Public | Government, school, university, hospital, museum, TV station, radio station, nonprofit organization |
Image Cropping Settings | Image Raw Size Statistics (Mean ± Standard Deviation, Pixels) | Image Size after Scaling (Pixels) |
---|---|---|
Building outer rectangle | Width: 44.74 (±40.00) Height: 33.56 (±31.20) | 64 × 64 |
Expansion radius of 25 m | Width: 128.08 (±40.00) Height: 116.89 (±31.20) | 128 × 128 |
Expansion radius of 50 m | Width: 211.41 (±40.00) Height: 200.22 (±31.20) | 224 × 224 |
Expansion radius of 75 m | Width: 294.74 (±40.00) Height: 283.56 (±31.20) | 256 × 256 |
Expansion radius of 100 m | Width: 378.08 (±40.00) Height: 366.89 (±31.20) | 384 × 384 |
Expansion radius of 125 m | Width: 461.41 (±40.00) Height: 450.22 (±31.20) | 448 × 448 |
Expansion radius of 150 m | Width: 544.74 (±40.00) Height: 533.56 (±31.20) | 512 × 512 |
Expansion radius of 175 m | Width: 628.08 (±40.00) Height: 616.89 (±31.20) | 640 × 640 |
Expansion radius of 200 m | Width: 711.41 (±40.00) Height: 700.22 (±31.20) | 768 × 768 |
Item | Batch Size | Optimizer | Learning Rate | Weight Decay | Loss Function |
---|---|---|---|---|---|
Configuration | 64 per GPU | AdamW | 0.01 | 0.0001 | Cross entropy |
Parameter Settings | Accuracy (%) | Weighted-F1 (%) | Kappa (%) |
---|---|---|---|
Without spatial prior information | 85.51 | 84.91 | 56.80 |
σ: 0.5 × radius T: 0 Integration method: stack | 85.79 | 84.66 | 56.61 |
σ: 1 × radius T: 0 Integration method: stack | 86.54 | 85.86 | 60.10 |
σ: 2 × radius T: 0 Integration method: stack | 86.59 | 85.26 | 57.68 |
σ: 1 × radius T: 0.3 Integration method: stack | 84.97 | 83.64 | 53.25 |
σ: 1 × radius T: 0.5 Integration method: stack | 86.05 | 84.71 | 55.72 |
σ: 1 × radius T: 0.7 Integration method: stack | 86.79 | 85.02 | 58.12 |
σ: 1 × radius T: 0 Integration method: map | 85.79 | 85.16 | 58.29 |
Expansion Radius (m) | Accuracy (%) | Weighted-F1(%) | Kappa (%) |
---|---|---|---|
0 | 80.97 | 76.31% | 26.48 |
25 | 85.01 | 84.03% | 54.44 |
50 | 86.75 | 86.21% | 61.98 |
75 | 86.70 | 86.76% | 63.96 |
100 | 87.81 | 87.25% | 64.13 |
125 | 87.28 | 86.65% | 61.71 |
150 | 87.66 | 86.87% | 62.61 |
175 | 86.88 | 86.07% | 61.17 |
200 | 85.96 | 86.02% | 61.40 |
Deep Learning Methods | Accuracy | Weighted-F1 | Kappa |
---|---|---|---|
ResNet-50 | 87.52% | 86.82% | 64.35% |
ResNet-101 | 87.16% | 86.51% | 61.43% |
ResNet-50 with over-sampling | 83.09% | 84.63% | 57.74% |
ResNet-50 with under-sampling | 83.82% | 84.43% | 56.08% |
ResNet-50 ensembles with under-sampling | 87.58% | 87.57% | 64.51% |
Deep Learning Methods | F1 Score (Residential) | F1 Score (Public) | F1 Score (Commercial) | F1 Score (Industrial) |
---|---|---|---|---|
ResNet-50 | 95.17% | 65.06% | 23.89% | 61.37% |
ResNet-101 | 94.62% | 61.33% | 35.46% | 61.87% |
ResNet-50 with over-sampling | 92.58% | 60.75% | 34.59% | 58.69% |
ResNet-50 with under-sampling | 93.55% | 51.54% | 36.06% | 59.45% |
ResNet-50 ensembles with under-sampling | 94.89% | 63.59% | 42.12% | 68.19% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Pu, Y.; Sun, Z.; Qian, Z.; Chen, M. Assessment of Rooftop Photovoltaic Potential Considering Building Functions. Remote Sens. 2024, 16, 2993. https://doi.org/10.3390/rs16162993
Zhang Z, Pu Y, Sun Z, Qian Z, Chen M. Assessment of Rooftop Photovoltaic Potential Considering Building Functions. Remote Sensing. 2024; 16(16):2993. https://doi.org/10.3390/rs16162993
Chicago/Turabian StyleZhang, Zhixin, Yingxia Pu, Zhuo Sun, Zhen Qian, and Min Chen. 2024. "Assessment of Rooftop Photovoltaic Potential Considering Building Functions" Remote Sensing 16, no. 16: 2993. https://doi.org/10.3390/rs16162993
APA StyleZhang, Z., Pu, Y., Sun, Z., Qian, Z., & Chen, M. (2024). Assessment of Rooftop Photovoltaic Potential Considering Building Functions. Remote Sensing, 16(16), 2993. https://doi.org/10.3390/rs16162993