Quaternary Deformation along the Gobi–Tian Shan Fault in the Easternmost Tian Shan (Harlik Mountain), Central Asia
Abstract
:1. Introduction
2. Geological Background
2.1. Tectonic Setting of the Easternmost Tian Shan
2.2. Quaternary Tectonics
3. Methods
3.1. Quaternary Surface Deformation Analysis
3.2. Late Quaternary Sediment Dating
3.3. Shortening Amount Calculation
4. Results
4.1. Quaternary Surface Deformations
4.1.1. Barkol Basin
4.1.2. Southern Foreland of Harlik Mountain
4.2. ESR Dating Results
4.3. Crustal Shortening Amount Calculation
5. Discussion
5.1. Quaternary Surface Deformation Patterns around Harlik Mountain
5.2. Slip and Shortening Rates around Harlik Mountain
5.3. Quaternary Deformation of the Easternmost Tian Shan
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef]
- Tapponnier, P.; Molnar, P. Active faulting and cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions. J. Geophys. Res.-Solid Earth 1979, 84, 3425–3459. [Google Scholar] [CrossRef]
- Hendrix, M.S.; Dumitru, T.A.; Graham, S.A. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision. Geology 1994, 22, 487–490. [Google Scholar] [CrossRef]
- Neil, E.A.; Houseman, G.A. Geodynamics of the Tarim Basin and the Tian Shan in central Asia. Tectonics 1997, 16, 571–584. [Google Scholar] [CrossRef]
- Cunningham, D. Active intracontinental transpressional mountain building in the Mongolian Altai: Defining a new class of orogen. Earth Planet. Sci. Lett. 2005, 240, 436–444. [Google Scholar] [CrossRef]
- Yin, A. Cenozoic tectonic evolution of Asia: A preliminary synthesis. Tectonophysics 2010, 488, 293–325. [Google Scholar] [CrossRef]
- Avouac, J.P.; Tapponnier, P.; Bai, M.; You, H.; Wang, G. Active thrusting and folding along the northern Tien-Sshan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res.-Solid Earth 1993, 98, 6755–6804. [Google Scholar] [CrossRef]
- Jolivet, M.; Dominguez, S.; Charreau, J.; Chen, Y.; Li, Y.; Wang, Q. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics 2010, 29, TC6019. [Google Scholar] [CrossRef]
- Lu, H.H.; Li, B.J.; Wu, D.Y.; Zhao, J.X.; Zheng, X.M.; Xiong, J.G.; Li, Y.L. Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland. Earth-Sci. Rev. 2019, 194, 19–37. [Google Scholar] [CrossRef]
- Yin, A.; Nie, S.; Craig, P.; Harrison, T.M.; Ryerson, F.J.; Qian, X.L.; Yang, G. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 1998, 17, 1–27. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Brown, E.T.; Deng, Q.D.; Feng, X.Y.; Li, J.; Molnar, P.; Shi, J.B.; Wu, Z.M.; You, H.C. Crustal shortening on the margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev. 1999, 41, 665–700. [Google Scholar] [CrossRef]
- Thompson, S.C.; Weldon, R.J.; Rubin, C.M.; Abdrakhmatov, K.; Molnar, P.; Berger, G.W. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. J. Geophys. Res.-Solid Earth 2002, 107, 2203. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, Q.; Yang, X.; Peng, S.; Xu, X.; Feng, X.Y. Late Cenozoic tectonic deformation and mechanism along the Tianshan Mountain, northwestern China. Earthq. Res. China 1996, 12, 127–140. [Google Scholar]
- Cunningham, D.; Owen, L.A.; Snee, L.W.; Li, J.L. Structural framework of a major intracontinental orogenic termination zone: The easternmost Tien Shan, China. J. Geol. Soc. 2003, 160, 575–590. [Google Scholar] [CrossRef]
- Wu, C.Y.; Zhang, P.Z.; Zhang, Z.Q.; Zheng, W.J.; Xu, B.B.; Wang, W.T.; Yu, Z.Y.; Dai, X.Y.; Zhang, B.X.; Zang, K.Z. Slip partitioning and crustal deformation patterns in the Tianshan orogenic belt derived from GPS measurements and their tectonic implications. Earth-Sci. Rev. 2023, 238, 104362. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, Q.; van Dam, T.; She, Y.W.; Wu, W.W. The vertical velocity field of the Tibetan Plateau and its surrounding areas derived from GPS and surface mass loading models. Earth Planet. Sci. Lett. 2023, 609, 118107. [Google Scholar] [CrossRef]
- Rizza, M.; Abdrakhmatov, K.; Walker, R.; Braucher, R.; Guillou, V.; Carr, A.S.; Campbell, G.; McKenzie, D.; Jackson, J.; Aumaître, G.; et al. Rate of Slip from Multiple Quaternary Dating Methods and Paleoseismic Investigations along the Talas-Fergana Fault: Tectonic Implications for the Tien Shan Range. Tectonics 2019, 38, 2477–2505. [Google Scholar] [CrossRef]
- Laborde, A.; Barrier, L.; Simoes, M.; Li, H.; Coudroy, T.; van Der Woerd, J.; Tapponnier, P.J.E.-S.R. Cenozoic deformation of the Tarim Basin and surrounding ranges (Xinjiang, China): A regional overview. Earth-Sci. Rev. 2019, 197, 102891. [Google Scholar] [CrossRef]
- Li, F.; Cheng, X.; Chen, H.; Shi, X.; Li, Y.; Charreau, J.; Weldon, R. Cenozoic Shortening and Propagation in the Eastern Kuqa Fold-And-Thrust Belt, South Tian Shan, NW China. Tectonics 2023, 42, e2022TC007447. [Google Scholar] [CrossRef]
- Chen, J.; Burbank, D.W.; Scharer, K.M.; Sobel, E.; Yin, J.; Rubin, C.; Zhao, R. Magnetochronology of the Upper Cenozoic strata in the Southwestern Chinese Tian Shan: Rates of Pleistocene folding and thrusting. Earth Planet. Sci. Lett. 2002, 195, 113–130. [Google Scholar] [CrossRef]
- Chang, J.; Li, D.; Min, K.; Qiu, N.; Xiao, Y.; Wu, H.; Liu, N. Cenozoic deformation of the Kalpin fold-and-thrust belt, southern Chinese Tian Shan: New insights from low-T thermochronology and sandbox modeling. Tectonophysics 2019, 766, 416–432. [Google Scholar] [CrossRef]
- England, P.; Molnar, P. Rheology of the lithosphere beneath the central and western Tien Shan. J. Geophys. Res.-Solid Earth 2015, 120, 3803–3823. [Google Scholar] [CrossRef]
- Shen, Z.-K.; Wang, M.; Li, Y.; Jackson, D.D.; Yin, A.; Dong, D.; Fang, P. Crustal deformation along the Altyn Tagh fault system, western China, from GPS. J. Geophys. Res. Solid Earth 2001, 106, 30607–30621. [Google Scholar] [CrossRef]
- Wu, C.Y.; Ren, G.X.; Wang, S.Y.; Yang, X.; Chen, G.; Duan, L.; Zhang, Z.Q.; Zheng, W.J.; Li, C.Y.; Ren, Z.K.; et al. Late Quaternary active faulting on the inherited Baoertu basement fault within the eastern Tian Shan orogenic belt: Implications for regional tectonic deformation and slip partitioning, NW China. Geol. Soc. Am. Bull. 2022, 134, 2085–2096. [Google Scholar] [CrossRef]
- Zubovich, A.V.; Wang, X.Q.; Scherba, Y.G.; Schelochkov, G.G.; Reilinger, R.; Reigber, C.; Mosienko, O.I.; Molnar, P.; Michajljow, W.; Makarov, V.I.; et al. GPS velocity field for the Tien Shan and surrounding regions. Tectonics 2010, 29, 6014. [Google Scholar] [CrossRef]
- Calais, E.; Vergnolle, M.; San’kov, V.; Lukhnev, A.; Miroshnitchenko, A.; Amarjargal, S.; Déverchère, J. GPS measurements of crustal deformation in the Baikal-Mongolia area (1994–2002): Implications for current kinematics of Asia. J. Geophys. Res.-Solid Earth 2003, 108, 2501. [Google Scholar] [CrossRef]
- Delvaux, D.; Abdrakhmatov, K.E.; Lemzin, I.N.; Strom, A.L. Landslides and surface breaks of the 1911 8.2 Kemin earthquake, Kyrgyzstan. Russ. Geol. Geophys. 2001, 42, 1667–1677. [Google Scholar]
- Avouac, J.P.; Tapponnier, P. Kinematic Model of Active Deformation in Central-Asia. Geophys. Res. Lett. 1993, 20, 895–898. [Google Scholar] [CrossRef]
- Windley, B.F.; Allen, M.B.; Zhang, C.; Zhao, Z.Y.; Wang, G.R. Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien-Shan-Range, Central-Asia. Geology 1990, 18, 128–131. [Google Scholar] [CrossRef]
- Campbell, G.E.; Walker, R.T.; Abdrakhmatov, K.; Carolin, S.; Carr, A.S.; Elliott, J.R.; Jackson, J.; Mackenzie, D.; Rizza, M.; Rodes, A. Rapid Late Quaternary Slip, Repeated Prehistoric Earthquake Rupture, and Widespread Landsliding Associated With the Karakudzhur Thrust, Central Kyrgyz Tien Shan. Tectonics 2019, 38, 3740–3764. [Google Scholar] [CrossRef]
- Yang, X.; Li, Z.G.; Wang, W.T.; Zhang, P.Z.; Wu, C.Y.; Chen, G.; Duan, L.; Wu, X.C.; Liu, K. Quaternary Crustal Shortening of the Houyanshan Structure in the Eastern Chinese Tian Shan: Constrained from Geological and Geomorphological Analyses. Remote Sens. 2023, 15, 1603. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, G.C.; Zhao, X.; Wang, Y.B.; Ji, J.L.; Cao, K.; Shen, T.Y.; Zhang, P.; Wang, A. Evolution of the Barkol Basin, eastern Tian Shan, and its geodynamic background. Int. J. Earth Sci. 2019, 108, 1253–1271. [Google Scholar] [CrossRef]
- Cunningham, W.D.; Windley, B.F.; Dorjnamjaa, D.; Badamgarov, J.; Saandar, M. Late Cenozoic transpression in southwestern Mongolia and the Gobi Altai-Tien Shan connection. Earth Planet. Sci. Lett. 1996, 140, 67–81. [Google Scholar] [CrossRef]
- Cunningham, D. Structural and topographic characteristics of restraining bend mountain ranges of the Altai, Gobi Altai and easternmost Tien Shan. Geol. Soc. Lond. Spec. Publ. 2007, 290, 219–237. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Wang, M.; Gan, W.-J. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics. Earth Sci. Front. 2003, 10, 81–92. [Google Scholar]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of Central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef]
- Greene, T.J.; Carroll, A.R.; Wartes, M.; Graham, S.A.; Wooden, J.L. Integrated provenance analysis of a complex orogenic terrane: Mesozoic uplift of the Bogda Shan and inception of the Turpan-Hami Basin, NW China. J. Sediment. Res. 2005, 75, 251–267. [Google Scholar] [CrossRef]
- Xu, L.X. Response of Piedmont Landforms to Tectonic Activity and Climatic Transitions Since the Late Pleistocene. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2020. [Google Scholar]
- Ren, G.X. Late Quaternary Activity and Tectonic Transition of the Sinistral Slip Faults, Eastern Tian Shan. Ph.D. Thesis, Institute of Geology, China Earthquake Administration, Beijing, China, 2021. [Google Scholar]
- Wang, M.; Shen, Z.K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. J. Geophys. Res.-Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, G.C.; Shen, T.Y.; Zhang, P.; Sotiriou, P.; Zhu, C.Y. Tectono-geomorphic evolution of Harlik Mountain in the Eastern Tian Shan, insight from thermochronological data and geomorphic analysis. Geol. J. 2020, 55, 7322–7334. [Google Scholar] [CrossRef]
- Pullen, A.; Kapp, P.; Chen, N. Development of stratigraphically controlled, eolian-modified unconsolidated gravel surfaces and yardang fields in the wind-eroded Hami Basin, northwestern China. Geol. Soc. Am. Bull. 2018, 130, 630–648. [Google Scholar] [CrossRef]
- Zhang, D.H.; Wang, G.C.; Pullen, A.; Abell, J.T.; Ji, J.L.; Shen, T.Y. Landscape evolution and development of eolian-modified unconsolidated gravel surfaces and yardangs in the Hami Basin, China. Geomorphology 2020, 368, 21. [Google Scholar] [CrossRef]
- Wu, F.Y.; Ran, Y.K.; Xu, L.X.; Cao, J.; Li, A. Paleoseismological Study of the Late Quaternary Slip-rate along the South Barkol Basin Fault and Its Tectonic Implications, Eastern Tian Shan, Xinjiang. Acta Geol. Sin.-Engl. Ed. 2017, 91, 429–442. [Google Scholar] [CrossRef]
- Abell, J.T.; Rahimi, S.R.; Pullen, A.; Lebo, Z.J.; Zhang, D.; Kapp, P.; Gloege, L.; Ridge, S.; Nie, J.; Winckler, G. A Quantitative Model-Based Assessment of Stony Desert Landscape Evolution in the Hami Basin, China: Implications for Plio-Pleistocene Dust Production in Eastern Asia. Geophys. Res. Lett. 2020, 47, e2020GL090064. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, J.; Huang, J.; Ye, B. A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles(UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China. Earth Planet. Phys. 2018, 2, 398–405. [Google Scholar] [CrossRef]
- Zhu, X.; Ren, Z.; Nie, S.; Bao, G.; Ha, G.; Bai, M.; Liang, P. DEM Generation from GF-7 Satellite Stereo Imagery Assisted by Space-Borne LiDAR and Its Application to Active Tectonics. Remote Sens. 2023, 15, 1480. [Google Scholar] [CrossRef]
- Beerten, K.; Pierreux, D.; Stesmans, A. Towards single grain ESR dating of sedimentary quartz: First results. Quat. Sci. Rev. 2003, 22, 1329–1334. [Google Scholar] [CrossRef]
- Beerten, K.; Stesmans, A. ESR dating of sedimentary quartz: Possibilities and limitations of the single-grain approach. Quat. Geochronol. 2007, 2, 373–380. [Google Scholar] [CrossRef]
- Moreno, D.; Richard, M.; Bahain, J.J.; Duval, M.; Falguères, C.; Tissoux, H.; Voinchet, P. Esr Dating of Sedimentary Quartz Grains: Some Basic Guidelines to Ensure Optimal Sampling Conditions. Quaternaire 2017, 28, 161–166. [Google Scholar] [CrossRef]
- Rink, W.J.; Bartoll, J.; Schwarcz, H.P.; Shane, P.; Bar-Yosef, O. Testing the reliability of ESR dating of optically exposed buried quartz sediments. Radiat. Meas. 2007, 42, 1618–1626. [Google Scholar] [CrossRef]
- Liu, C.R.; Yin, G.M.; Gao, L.; Bahain, J.J.; Li, J.P.; Lin, M.; Chen, S.M. ESR dating of Pleistocene archaeological localities of the Nihewan Basin, North China—Preliminary results. Quat. Geochronol. 2010, 5, 385–390. [Google Scholar] [CrossRef]
- Gibbs, A.D. Balanced Cross-Section Construction from Seismic Sections in Areas of Extensional Tectonics. J. Struct. Geol. 1983, 5, 153–160. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, W.; Zhang, P.; Zhang, Z.; Jia, Q.; Yu, J.; Zhang, H.; Yao, Y.; Liu, J.; Han, G.; et al. Oblique Thrust of the Maidan Fault and Late Quaternary Tectonic Deformation in the Southwestern Tian Shan, Northwestern China. Tectonics 2019, 38, 2625–2645. [Google Scholar] [CrossRef]
- Webb, L.; Johnson, C.L. Tertiary strike-slip faulting in southeastern Mongolia and implications for Asian tectonics. Earth Planet. Sci. Lett. 2006, 241, 323–335. [Google Scholar] [CrossRef]
- Yao, Y.; Wen, S.Y.; Yang, L.; Wu, C.Y.; Sun, X.L.; Wang, L.L.; Zhang, Z.B. A Shallow and Left-Lateral Rupture Event of the 2021 Mw 5.3 Baicheng Earthquake: Implications for the Diffuse Deformation of Southern Tianshan. Earth Space Sci. 2022, 9, e2021EA001995. [Google Scholar] [CrossRef]
- Hubert-Ferrari, A.; Suppe, J.; Gonzalez-Mieres, R.; Wang, X. Mechanisms of active folding of the landscape (southern Tian Shan, China). J. Geophys. Res.-Solid Earth 2007, 112, B03s09. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Huang, X.; Wang, Z. Cenozoic exhumation of the Tianshan as constrained by regional low-temperature thermochronology. Earth-Sci. Rev. 2023, 237, 104325. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, H.; Yang, R.; Pang, L.; Jiao, R.; Wang, Y.; Pang, J.; Li, Y. Two-stage exhumation, uplift, and basinward propagation of the Tian Shan during the late Cenozoic. Earth-Sci. Rev. 2024, 256, 104868. [Google Scholar] [CrossRef]
- Gillespie, J.; Glorie, S.; Jepson, G.; Zhang, Z.Y.; Xiao, W.J.; Danisik, M.; Collins, A.S. Differential Exhumation and Crustal Tilting in the Easternmost Tianshan (Xinjiang, China), Revealed by Low-Temperature Thermochronology. Tectonics 2017, 36, 2142–2158. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, G.C.; Kapp, P.; Shen, T.Y.; Zhang, P.; Zhu, C.Y.; Cao, K. Episodic exhumation and related tectonic controlling during Mesozoic in the Eastern Tian Shan, Xinjiang, northwestern China. Tectonophysics 2020, 796, 21. [Google Scholar] [CrossRef]
- He, Z.Y.; Wang, B.; Glorie, S.; Su, W.B.; Ni, X.H.; Jepson, G.; Liu, J.S.; Zhong, L.L.; Gillespie, J.; De Grave, J. Mesozoic building of the Eastern Tianshan and East Junggar (NW China) revealed by low-temperature thermochronology. Gondwana Res. 2022, 103, 37–53. [Google Scholar] [CrossRef]
- Webb, A.A.G.; Guo, H.; Clift, P.D.; Husson, L.; Mueller, T.; Costantino, D.; Yin, A.; Xu, Z.; Cao, H.; Wang, Q. The Himalaya in 3D: Slab dynamics controlled mountain building and monsoon intensification. Lithosphere 2017, 9, 637–651. [Google Scholar] [CrossRef]
- Tian, H.; Chen, H.; Cheng, X.; Wu, L.; Lin, X.; Gao, S.; Li, F.; Xu, X.; Yin, Q. Limited northward expansion of the Tibetan Plateau in the Late Cenozoic: Insights from the cherchen fault in the Southeastern Tarim Basin. Tectonics 2023, 42, e2022TC007694. [Google Scholar] [CrossRef]
Sample No. | Location | U (ug·g−1) | Th (ug·g−1) | K2O (%) | Water (%) | Equivalent Dose (Gy) | Dose Rate (Gy·ka−1) | Age (ka) |
---|---|---|---|---|---|---|---|---|
20HLK6-1 | Harlik South | 2.17 | 8.52 | 2.11 | 4 | 1050 ± 95 | 3.20 | 328 ± 32 |
21PM03-1 | Harlik South | 4.46 | 9.40 | 2.13 | 5 | 2084 ± 329 | 3.90 | 534 ± 74 |
PM107-4 | Barkol Basin | 2.26 | 6.18 | 2.40 | 5 | 4280 ± 407 | 4.78 | 895 ± 80 |
PM107-5 | Barkol Basin | 2.48 | 6.81 | 2.38 | 5 | 4188 ± 349 | 4.99 | 838 ± 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Ding, Y.; Wang, G.; Zhang, D.; Zhao, Z. Quaternary Deformation along the Gobi–Tian Shan Fault in the Easternmost Tian Shan (Harlik Mountain), Central Asia. Remote Sens. 2024, 16, 3343. https://doi.org/10.3390/rs16173343
Shen T, Ding Y, Wang G, Zhang D, Zhao Z. Quaternary Deformation along the Gobi–Tian Shan Fault in the Easternmost Tian Shan (Harlik Mountain), Central Asia. Remote Sensing. 2024; 16(17):3343. https://doi.org/10.3390/rs16173343
Chicago/Turabian StyleShen, Tianyi, Yan Ding, Guocan Wang, Dehai Zhang, and Zihao Zhao. 2024. "Quaternary Deformation along the Gobi–Tian Shan Fault in the Easternmost Tian Shan (Harlik Mountain), Central Asia" Remote Sensing 16, no. 17: 3343. https://doi.org/10.3390/rs16173343