Learn from Simulations, Adapt to Observations: Super-Resolution of Isoprene Emissions via Unpaired Domain Adaptation
Abstract
:1. Introduction
- We present a novel approach that addresses the SR task under data domain mismatch, using simulated emissions ( domain) to super-resolve satellite-derived emissions ( domain) without retraining specific SR models.
- We propose a DA strategy to transfer knowledge from the domain to the domain, addressing the challenges of limited observed data and differences in spatial/temporal domains.
- Our proposed DA strategy deviates from the original CycleGAN framework, enhancing it with additional loss terms to improve SR and DA performance.
- We demonstrate the effectiveness and robustness of the proposed method on isoprene emissions by restoring fine-grained patterns across different setups.
- We show that our DA strategy enables robust SR solutions even under spatial resolution mismatch or when testing data are unknown.
2. Related Works
2.1. Super-Resolution of Climate Data
2.2. Domain Adaptation for Climate Data
3. CycleGAN Basics
3.1. Structure
3.2. Training Objective
4. Proposed Domain Adaptation Methodology
4.1. Motivations
- Input-level adaptation (): requires as input an LR simulated map , since it is originally trained on the domain. Therefore, an algorithm is required to transform the emission map from the domain () into an emission that “seems like” belonging to the domain, thus performing . The has the same meaning as in Figure 2: it indicates that, by applying the domain translation, we are estimating just an approximation of the domain distribution.
- Output-level adaptation (): the operator performs the SR task in the domain, returning . Therefore, another algorithm is required to transform the super-resolved map in the domain () back to the domain, thus performing . In this case, the also indicates an estimation of the observed domain distribution.
4.2. Proposed Methodology
- Emission transformation. Since isoprene emissions exhibit a spatially sparse pattern and a wide dynamic range in both the and domains [24,43], we adopt the approach originally proposed in [36], where a non-linear data transformation based on prior information derived from statistical analysis of the HR data are used to increase the robustness to outliers and local maxima. This transformation adapts the emission dynamic into more feasible values, required for numerical stability when training the NNs. Therefore, we define the transformed emissions as . and are the non-linear data transformations exploiting statistics from the and the domains, respectively (see [36] for more details).
- Emission adaptation . The LR transformed emission maps from the domain are fed into a DA network, which performs the mapping function . This mapping enables passing from to . The superscript in indicates that by applying the adaptation function we are finding an approximation of the simulated domain distribution. This DA step is needed since the SR network expects data with a distribution compatible with -domain emissions. For the emission maps in Figure 3, we can notice the significant spatial and numerical difference between the (source) and (target) domains of the generator.
- Emission super-resolution. The domain-adapted emission is the input of the operator in charge of performing the actual SR task. Therefore, the SR task can be formulated asIn this case, both and are emission maps that “seem like” they belong to the domain, hence the tilde. However, notice that they actually belong to the domain.
- Emission adaptation . After the SR in the domain, we perform an inverse adaptation operation to convert HR emissions in the domain. Therefore, the super-resolved emission is processed by applying an inverse mapping function . Computing , we return to the initial domain of the emission map (). In this case, also indicates an approximation of the domain. For emission maps in Figure 3, we can notice the spatial and numerical difference between the (source) and (target) domains of the generator.
- Emission back-transformation. At this point, the emission is back-transformed to its original data range by applying the data transformation, resulting in . This represents our estimation of the HR emission map in the domain.
- The first CycleGAN is used at step 2 of our pipeline and converts LR data from the to the domain (Figure 4a). We refer to the mapping function derived from its generator as ;
- The second CycleGAN is used at step 4 of our pipeline and converts HR data from the to the domain (Figure 4b). We refer to the mapping function derived from its generator as .
4.3. Training Loss Components
4.3.1. CycleGAN (CG) Loss
4.3.2. Feature Alignment (FeA) Loss
4.3.3. Emission Consistency (EmC) Loss
4.3.4. Full Training Objective
4.4. Deployment Stage
5. Emission Inventories
5.1. Simulated Domain
5.2. Observed Domain
5.3. Experimental Dataset
6. Experimental Setup
6.1. Training Setup
6.2. Evaluation Metrics
7. Experimental Results
7.1. FeA Loss Coefficient Analysis
7.2. Loss Term Contributions
7.3. Comparative Studies
7.3.1. Strategy I—Training the SR with Emissions
7.3.2. Strategy II—Straightforward Data Transformation
7.3.3. Our Proposed Strategies
7.3.4. Discussion
8. Towards Generalization in Emission Super-Resolution
8.1. Spatial Resolution Generalization
- Matched: This scenario is the one adopted in all the previous results, where we have a matching between the spatial resolution of and emissions, i.e., BU-MEG-050 () for emissions and TD-OMI-050 () for the emissions;
- Unmatched: This scenario uses different spatial resolutions between the and the emissions, i.e., BU-MEG-025 () for emissions and TD-OMI-050 () for the emissions.
8.2. Emission Inventory Generalization
9. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. CG Loss Formulation
Appendix B. Evaluation Metrics
References
- Ciccioli, P.; Silibello, C.; Finardi, S.; Pepe, N.; Ciccioli, P.; Rapparini, F.; Neri, L.; Fares, S.; Brilli, F.; Mircea, M.; et al. The potential impact of biogenic volatile organic compounds (BVOCs) from terrestrial vegetation on a Mediterranean area using two different emission models. Agric. For. Meteorol. 2023, 328, 109255. [Google Scholar] [CrossRef]
- McGenity, T.J.; Crombie, A.T.; Murrell, J.C. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. ISME J. 2018, 12, 931–941. [Google Scholar] [CrossRef]
- Wang, B.; Li, Z.; Liu, Z.; Sun, Y.; Wang, C.; Xiao, Y.; Lu, X.; Yan, G.; Xu, C. Characteristics, Secondary Transformation Potential and Health Risks of Atmospheric Volatile Organic Compounds in an Industrial Area in Zibo, East China. Atmosphere 2023, 14, 158. [Google Scholar] [CrossRef]
- DiMaria, C.A.; Jones, D.B.A.; Worden, H.; Bloom, A.A.; Bowman, K.; Stavrakou, T.; Miyazaki, K.; Worden, J.; Guenther, A.; Sarkar, C.; et al. Optimizing the Isoprene Emission Model MEGAN With Satellite and Ground-Based Observational Constraints. J. Geophys. Res. Atmos. 2023, 128, e2022JD037822. [Google Scholar] [CrossRef]
- Zhang, S.; Lyu, Y.; Yang, X.; Yuan, L.; Wang, Y.; Wang, L.; Liang, Y.; Qiao, Y.; Wang, S. Modeling Biogenic Volatile Organic Compounds Emissions and Subsequent Impacts on Ozone Air Quality in the Sichuan Basin, Southwestern China. Front. Ecol. Evol. 2022, 10, 924944. [Google Scholar] [CrossRef]
- Hewitt, C.N.; Langford, B.; Possell, M.; Karl, T.; Owen, S.M. Quantification of VOC emission rates from the biosphere. TrAC Trends Anal. Chem. 2011, 30, 937–944. [Google Scholar] [CrossRef]
- Weber, J.; Archer-Nicholls, S.; Abraham, N.L.; Shin, Y.M.; Griffiths, P.; Grosvenor, D.P.; Scott, C.E.; Archibald, A.T. Chemistry-driven changes strongly influence climate forcing from vegetation emissions. Nat. Commun. 2022, 13, 7202. [Google Scholar] [CrossRef]
- Wang, H.; Welch, A.M.; Nagalingam, S.; Leong, C.; Czimczik, C.I.; Tang, J.; Seco, R.; Rinnan, R.; Vettikkat, L.; Schobesberger, S.; et al. High temperature sensitivity of Arctic isoprene emissions explained by sedges. Nat. Commun. 2024, 15, 6144. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; Mckay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Mircea, M.; Borge, R.; Finardi, S.; Briganti, G.; Russo, F.; de la Paz, D.; D’Isidoro, M.; Cremona, G.; Villani, M.G.; Cappelletti, A.; et al. The Role of Vegetation on Urban Atmosphere of Three European Cities. Part 2: Evaluation of Vegetation Impact on Air Pollutant Concentrations and Depositions. Forests 2023, 14, 1255. [Google Scholar] [CrossRef]
- Silibello, C.; Finardi, S.; Pepe, N.; Baraldi, R.; Ciccioli, P.; Mircea, M.; Ciccioli, P. Modelling of Biogenic Volatile Organic Compounds Emissions Using a Detailed Vegetation Inventory Over a Southern Italy Region. In Air Pollution Modeling and Its Application XXVIII; Springer: Cham, Switzerland, 2022; pp. 279–285. [Google Scholar]
- Ashworth, K.; Boissard, C.; Folberth, G.; Lathière, J.; Schurgers, G. Global Modelling of Volatile Organic Compound Emissions; Springer: Cham, Switzerland, 2013; pp. 451–487. [Google Scholar]
- Guenther, A.; Jiang, X.; Shah, T.; Huang, L.; Kemball-Cook, S.; Yarwood, G. Model of Emissions of Gases and Aerosol from Nature Version 3 (MEGAN3) for Estimating Biogenic Emissions. In Air Pollution Modeling and Its Application XXVI; Springer: Cham, Switzerland, 2020; pp. 187–192. [Google Scholar]
- Müller, J.F.; Stavrakou, T.; Peeters, J. Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1)—Part 1: Chemical mechanism. Geosci. Model Dev. 2019, 12, 2307–2356. [Google Scholar] [CrossRef]
- Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environ. Pollut. 2013, 183, 71–80. [Google Scholar] [CrossRef]
- Peñuelas, J.; Staudt, M. BVOCs and global change. Trends Plant Sci. 2010, 15, 133–144. [Google Scholar] [CrossRef]
- Laothawornkitkul, J.; Taylor, J.E.; Paul, N.D.; Hewitt, C.N. Biogenic volatile organic compounds in the Earth system. New Phytol. 2009, 183, 27–51. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; An, C.; Guy, C. A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental implications. Renew. Sustain. Energy Rev. 2021, 149, 111317. [Google Scholar] [CrossRef]
- Tani, A.; Mochizuki, T. Review: Exchanges of volatile organic compounds between terrestrial ecosystems and the atmosphere. J. Agric. Meteorol. 2021, 77, 66–80. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Guenther, A.B.; Yang, X.; Wang, L.; Xiao, T.; Li, J.; Feng, J.; Xu, Q.; Cheng, H. A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: The roles of land cover change and climate variability. Atmos. Chem. Phys. 2021, 21, 4825–4848. [Google Scholar] [CrossRef]
- Sindelarova, K.; Markova, J.; Simpson, D.; Huszar, P.; Karlicky, J.; Darras, S.; Granier, C. High-resolution biogenic global emission inventory for the time period 2000–2019 for air quality modelling. Earth Syst. Sci. Data 2022, 14, 251–270. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Wu, C.; Lin, G. Regional to global distributions, trends, and drivers of biogenic volatile organic compound emission from 2001 to 2020. Atmos. Chem. Phys. 2024, 24, 3309–3328. [Google Scholar] [CrossRef]
- Opacka, B.; Müller, J.F.; Stavrakou, T.; Bauwens, M.; Sindelarova, K.; Markova, J.; Guenther, A.B. Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model. Atmos. Chem. Phys. 2021, 21, 8413–8436. [Google Scholar] [CrossRef]
- De Smedt, I.; Van Roozendael, M.; Stavrakou, T.; Müller, J.F.; Lerot, C.; Theys, N.; Valks, P.; Hao, N.; van der A, R. Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues. Atmos. Meas. Tech. 2012, 5, 2933–2949. [Google Scholar] [CrossRef]
- Bauwens, M.; Stavrakou, T.; Müller, J.F.; De Smedt, I.; Van Roozendael, M.; van der Werf, G.R.; Wiedinmyer, C.; Kaiser, J.W.; Sindelarova, K.; Guenther, A. Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations. Atmos. Chem. Phys. 2016, 16, 10133–10158. [Google Scholar] [CrossRef]
- Stavrakou, T.; Müller, J.F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; De Mazière, M.; Vigouroux, C.; Hendrick, F.; George, M.; Clerbaux, C.; et al. How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? Atmos. Chem. Phys. 2015, 15, 11861–11884. [Google Scholar] [CrossRef]
- Fu, D.; Millet, D.B.; Wells, K.C.; Payne, V.H.; Yu, S.; Guenther, A.; Eldering, A. Direct retrieval of isoprene from satellite-based infrared measurements. Nat. Commun. 2019, 10, 3811. [Google Scholar] [CrossRef] [PubMed]
- Oomen, G.M.; Müller, J.F.; Stavrakou, T.; De Smedt, I.; Blumenstock, T.; Kivi, R.; Makarova, M.; Palm, M.; Röhling, A.; Té, Y.; et al. Weekly derived top-down volatile-organic-compound fluxes over Europe from TROPOMI HCHO data from 2018 to 2021. Atmos. Chem. Phys. 2024, 24, 449–474. [Google Scholar] [CrossRef]
- Wolfe, G.M.; Kaiser, J.; Hanisco, T.F.; Keutsch, F.N.; de Gouw, J.A.; Gilman, J.B.; Graus, M.; Hatch, C.D.; Holloway, J.; Horowitz, L.W.; et al. Formaldehyde production from isoprene oxidation across NOx regimes. Atmos. Chem. Phys. 2016, 16, 2597–2610. [Google Scholar] [CrossRef]
- Kaiser, J.; Jacob, D.J.; Zhu, L.; Travis, K.R.; Fisher, J.A.; González Abad, G.; Zhang, L.; Zhang, X.; Fried, A.; Crounse, J.D.; et al. High-resolution inversion of OMI formaldehyde columns to quantify isoprene emission on ecosystem-relevant scales: Application to the southeast US. Atmos. Chem. Phys. 2018, 18, 5483–5497. [Google Scholar] [CrossRef]
- Rampal, N.; Hobeichi, S.; Gibson, P.B.; Baño-Medina, J.; Abramowitz, G.; Beucler, T.; González-Abad, J.; Chapman, W.; Harder, P.; Gutiérrez, J.M. Enhancing Regional Climate Downscaling through Advances in Machine Learning. Artif. Intell. Earth Syst. 2024, 3, 230066. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Sdraka, M.; Papoutsis, I.; Psomas, B.; Vlachos, K.; Ioannidis, K.; Karantzalos, K.; Gialampoukidis, I.; Vrochidis, S. Deep Learning for Downscaling Remote Sensing Images: Fusion and super-resolution. IEEE Geosci. Remote Sens. Mag. 2022, 10, 202–255. [Google Scholar] [CrossRef]
- Chen, C.H. (Ed.) Signal and Image Processing for Remote Sensing, 3rd ed.; Signal and Image Processing of Earth Observations; Routledge: London, UK, 2024. [Google Scholar]
- Giganti, A.; Mandelli, S.; Bestagini, P.; Marcon, M.; Tubaro, S. Super-Resolution of BVOC Maps by Adapting Deep Learning Methods. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, 8–11 October 2023; pp. 1650–1654. [Google Scholar]
- Giganti, A.; Mandelli, S.; Bestagini, P.; Marcon, M.; Tubaro, S. Multi-BVOC Super-Resolution Exploiting Compounds Inter-Connection. In Proceedings of the European Signal Processing Conference (EUSIPCO), Helsinki, Finland, 4–8 September 2023; pp. 1315–1319. [Google Scholar]
- Giganti, A.; Mandelli, S.; Bestagini, P.; Marcon, M.; Tubaro, S. Super-Resolution of Bvoc Emission Maps Via Domain Adaptation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, 7–12 July 2024; pp. 738–741. [Google Scholar]
- Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J.W. A theory of learning from different domains. Mach. Learn. 2010, 79, 151–175. [Google Scholar] [CrossRef]
- Xu, M.; Wu, M.; Chen, K.; Zhang, C.; Guo, J. The Eyes of the Gods: A Survey of Unsupervised Domain Adaptation Methods Based on Remote Sensing Data. Remote Sens. 2022, 14, 4380. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Schiavina, M.; Melchiorri, M.; Pisoni, E.; Graziosi, F.; Muntean, M.; Maes, J.; Dijkstra, L.; et al. Insights into the spatial distribution of global, national, and subnational greenhouse gas emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0). Earth Syst. Sci. Data 2024, 16, 2811–2830. [Google Scholar] [CrossRef]
- Bauwens, M.; Stavrakou, T.; Müller, J.F.; Van Schaeybroeck, B.; De Cruz, L.; De Troch, R.; Giot, O.; Hamdi, R.; Termonia, P.; Laffineur, Q.; et al. Recent past (1979–2014) and future (2070–2099) isoprene fluxes over Europe simulated with the MEGAN–MOHYCAN model. Biogeosciences 2018, 15, 3673–3690. [Google Scholar] [CrossRef]
- Geiss, A.; Silva, S.J.; Hardin, J.C. Downscaling atmospheric chemistry simulations with physically consistent deep learning. Geosci. Model Dev. 2022, 15, 6677–6694. [Google Scholar] [CrossRef]
- Siddique, M.A.; Naseer, E.; Usama, M.; Basit, A. Estimation of Surface-Level NO2 Using Satellite Remote Sensing and Machine Learning: A review. IEEE Geosci. Remote Sens. Mag. 2024, 12, 8–34. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in air quality research – current and emerging challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Baño Medina, J.; Manzanas, R.; Gutiérrez, J.M. Configuration and intercomparison of deep learning neural models for statistical downscaling. Geosci. Model Dev. 2020, 13, 2109–2124. [Google Scholar] [CrossRef]
- Sha, Y.; II, D.J.G.; West, G.; Stull, R. Deep-Learning-Based Gridded Downscaling of Surface Meteorological Variables in Complex Terrain. Part II: Daily Precipitation. J. Appl. Meteorol. Climatol. 2020, 59, 2075–2092. [Google Scholar] [CrossRef]
- Chiang, C.H.; Huang, Z.H.; Liu, L.; Liang, H.C.; Wang, Y.C.; Tseng, W.L.; Wang, C.; Chen, C.T.; Wang, K.C. Climate Downscaling: A Deep-Learning Based Super-resolution Model of Precipitation Data with Attention Block and Skip Connections. arXiv 2024, arXiv:2403.17847. [Google Scholar]
- Vandal, T.; Kodra, E.; Ganguly, S.; Michaelis, A.; Nemani, R.; Ganguly, A.R. DeepSD: Generating High Resolution Climate Change Projections through Single Image Super-Resolution. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1663–1672. [Google Scholar]
- Passarella, L.S.; Mahajan, S.; Pal, A.; Norman, M.R. Reconstructing High Resolution ESM Data Through a Novel Fast Super Resolution Convolutional Neural Network (FSRCNN). Geophys. Res. Lett. 2022, 49, e2021GL097571. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Foster, I.; Chang, W.; Kettimuthu, R.; Kotamarthi, V.R. Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geosci. Model Dev. 2021, 14, 6355–6372. [Google Scholar] [CrossRef]
- Brecht, R.; Bakels, L.; Bihlo, A.; Stohl, A. Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution. Geosci. Model Dev. 2023, 16, 2181–2192. [Google Scholar] [CrossRef]
- Lloyd, D.T.; Abela, A.; Farrugia, R.A.; Galea, A.; Valentino, G. Optically Enhanced Super-Resolution of Sea Surface Temperature Using Deep Learning. IEEE Trans. Geosci. Remote Sens. (TGRS) 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Park, S.; Singh, K.; Nellikkattil, A.; Zeller, E.; Mai, T.; Cha, M. Downscaling Earth System Models with Deep Learning. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022; pp. 3733–3742. [Google Scholar]
- Tian, T.; Cheng, L.; Wang, G.; Abraham, J.; Wei, W.; Ren, S.; Zhu, J.; Song, J.; Leng, H. Reconstructing ocean subsurface salinity at high resolution using a machine learning approach. Earth Syst. Sci. Data 2022, 14, 5037–5060. [Google Scholar] [CrossRef]
- Nguyen, B.M.; Tian, G.; Vo, M.T.; Michel, A.; Corpetti, T.; Granero-Belinchon, C. Convolutional Neural Network Modelling for MODIS Land Surface Temperature Super-Resolution. In Proceedings of the European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; pp. 1806–1810. [Google Scholar]
- Quesada-Chacón, D.; Baño-Medina, J.; Barfus, K.; Bernhofer, C. Downscaling CORDEX Through Deep Learning to Daily 1 km Multivariate Ensemble in Complex Terrain. Earth’s Future 2023, 11, e2023EF003531. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Q. Deep learning-based downscaling of tropospheric nitrogen dioxide using ground-level and satellite observations. Sci. Total Environ. 2021, 773, 145145. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Franklin, M.; Yin, Q.; Wu, J.; Camps-Valls, G.; Zhu, Z.; Wang, C.; Ge, Y.; Reichstein, M. Improving air quality assessment using physics-inspired deep graph learning. Npj Clim. Atmos. Sci. 2023, 6, 152. [Google Scholar] [CrossRef]
- Oyama, N.; Ishizaki, N.N.; Koide, S.; Yoshida, H. Deep generative model super-resolves spatially correlated multiregional climate data. Sci. Rep. 2023, 13, 5992. [Google Scholar] [CrossRef]
- Mardani, M.; Brenowitz, N.; Cohen, Y.; Pathak, J.; Chen, C.Y.; Liu, C.C.; Vahdat, A.; Nabian, M.A.; Ge, T.; Subramaniam, A.; et al. Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling. arXiv 2024, arXiv:2309.15214. [Google Scholar]
- Peng, J.; Huang, Y.; Sun, W.; Chen, N.; Ning, Y.; Du, Q. Domain Adaptation in Remote Sensing Image Classification: A Survey. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. (JSTAR) 2022, 15, 9842–9859. [Google Scholar] [CrossRef]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, H.; Yuan, Z.; Wang, C. Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada; 2021; pp. 4298–4307. [Google Scholar]
- Soh, J.W.; Cho, S.; Cho, N.I. Meta-Transfer Learning for Zero-Shot Super-Resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 3516–3525. [Google Scholar]
- Wei, Y.; Gu, S.; Li, Y.; Timofte, R.; Jin, L.; Song, H. Unsupervised Real-World Image Super Resolution via Domain-Distance Aware Training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13385–13394. [Google Scholar]
- Kim, J.; Jo, H.W.; Kim, W.; Jeong, Y.; Park, E.; Lee, S.; Kim, M.; Lee, W.K. Application of the domain adaptation method using a phenological classification framework for the land-cover classification of North Korea. Ecol. Inform. 2024, 81, 102576. [Google Scholar] [CrossRef]
- Soto Vega, P.J.; da Costa, G.A.O.P.; Feitosa, R.Q.; Ortega Adarme, M.X.; de Almeida, C.A.; Heipke, C.; Rottensteiner, F. An unsupervised domain adaptation approach for change detection and its application to deforestation mapping in tropical biomes. ISPRS J. Photogramm. Remote Sens. 2021, 181, 113–128. [Google Scholar] [CrossRef]
- Marsocci, V.; Gonthier, N.; Garioud, A.; Scardapane, S.; Mallet, C. GeoMultiTaskNet: Remote sensing unsupervised domain adaptation using geographical coordinates. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023; pp. 2075–2085. [Google Scholar]
- Yadav, N.; Sorek-Hamer, M.; Von Pohle, M.; Asanjan, A.A.; Sahasrabhojanee, A.; Suel, E.; Arku, R.E.; Lingenfelter, V.; Brauer, M.; Ezzati, M.; et al. Using deep transfer learning and satellite imagery to estimate urban air quality in data-poor regions. Environ. Pollut. 2024, 342, 122914. [Google Scholar] [CrossRef]
- Wang, M.; Franklin, M.; Li, L. Generating Fine-Scale Aerosol Data through Downscaling with an Artificial Neural Network Enhanced with Transfer Learning. Atmosphere 2022, 13, 255. [Google Scholar] [CrossRef]
- Gibson, P.B.; Chapman, W.E.; Altinok, A.; Delle Monache, L.; DeFlorio, M.J.; Waliser, D.E. Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts. Commun. Earth Environ. 2021, 2, 159. [Google Scholar] [CrossRef]
- Baño-Medina, J.; Iturbide, M.; Fernández, J.; Gutiérrez, J.M. Transferability and Explainability of Deep Learning Emulators for Regional Climate Model Projections: Perspectives for Future Applications. Artif. Intell. Earth Syst. 2024, 3, e230099. [Google Scholar] [CrossRef]
- Rasp, S.; Thuerey, N. Data-Driven Medium-Range Weather Prediction With a Resnet Pretrained on Climate Simulations: A New Model for WeatherBench. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002405. [Google Scholar] [CrossRef]
- Nguyen, T.; Brandstetter, J.; Kapoor, A.; Gupta, J.K.; Grover, A. ClimaX: A Foundation Model for Weather and Climate. In Proceedings of the International Conference on Machine Learning (ICML), Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Materia, S.; García, L.P.; van Straaten, C.; O, S.; Mamalakis, A.; Cavicchia, L.; Coumou, D.; de Luca, P.; Kretschmer, M.; Donat, M. Artificial intelligence for climate prediction of extremes: State of the art, challenges, and future perspectives. WIREs Clim. Change 2023, e914. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Advances in Neural Information Processing Systems; Springer: Cham, Switzerland, 2014; Volume 27. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Peterson, R.A.; Cavanaugh, J.E. Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. J. Appl. Stat. 2020, 47, 2312–2327. [Google Scholar] [CrossRef]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.T.; Zhang, L. Second-Order Attention Network for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Liu, T.; Chen, Z.; Li, Q.; Wang, Y.; Zhou, K.; Xie, W.; Fang, Y.; Zheng, K.; Zhao, Z.; Liu, S.; et al. MDA-SR: Multi-level Domain Adaptation Super-Resolution for Wireless Capsule Endoscopy Images. In Medical Image Computing and Computer Assisted Intervention (MICCAI); Springer: Cham, Switzerland, 2023; pp. 518–527. [Google Scholar]
- Stavrakou, T.; Müller, J.F.; Bauwens, M.; De Smedt, I.; Van Roozendael, M.; Guenther, A.; Wild, M.; Xia, X. Isoprene emissions over Asia 1979–2012: Impact of climate and land-use changes. Atmos. Chem. Phys. 2014, 14, 4587–4605. [Google Scholar] [CrossRef]
- Müller, J.F.; Stavrakou, T.; Oomen, G.M.; Opacka, B.; De Smedt, I.; Guenther, A.; Vigouroux, C.; Langerock, B.; Aquino, C.A.B.; Grutter, M.; et al. Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates. Atmos. Chem. Phys. 2024, 24, 2207–2237. [Google Scholar] [CrossRef]
- De Smedt, I.; Stavrakou, T.; Hendrick, F.; Danckaert, T.; Vlemmix, T.; Pinardi, G.; Theys, N.; Lerot, C.; Gielen, C.; Vigouroux, C.; et al. Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations. Atmos. Chem. Phys. 2015, 15, 12519–12545. [Google Scholar] [CrossRef]
- Li, X.; Dong, W.; Wu, J.; Li, L.; Shi, G. Superresolution Image Reconstruction: Selective milestones and open problems. IEEE Signal Process. Mag. 2023, 40, 54–66. [Google Scholar] [CrossRef]
- Donini, E.; Bruzzone, L.; Bovolo, F. Super-Resolution of Radargrams with a Generative Deep Learning Model. IEEE Trans. Geosci. Remote Sens. (TGRS) 2024, 62. [Google Scholar] [CrossRef]
- Carbone, A.; Restaino, R.; Vivone, G.; Chanussot, J. Model-Based Super-Resolution for Sentinel-5P Data. IEEE Trans. Geosci. Remote Sens. (TGRS) 2024, 62. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process (TIP) 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Zhou, J.; Civco, D.L.; Silander, J.A. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens. 1998, 19, 743–757. [Google Scholar] [CrossRef]
Parameter | Biogenic Inventory | |||
---|---|---|---|---|
BU-MEG-050 | BU-MEG-025 | TD-OMI-050 | TD-GOME2-050 | |
Domain | ||||
Method | MEGANv3.2 | MEGAN2.1 | OMI-based Inversion | GOME-2-based Inversion |
Variable | Isoprene Flux | Isoprene Flux | Isoprene Flux | Isoprene Flux |
Reference | [23] | [22] | [27] | [85] |
Spatial Coverage | Global | Global | Global | Global |
Spatial Resolution | ||||
Temporal Coverage | 2001–2020 | 2000–2019 | 2005–2014 | 2007–2012 |
Temporal Resolution | Hourly (Monthly Avg) | Hourly (Monthly Avg) | Daily | Daily |
Num. Emission Maps | 5760 | 5760 | 3652 | 2192 |
Emission Range [min, max] |
SSIM ↑ | NMSE ↓ | UIQI ↑ | SCC ↑ | ||
---|---|---|---|---|---|
0.0 | 0.0 | ||||
0.5 | 0.0 | ||||
1.0 | 0.0 | ||||
0.0 | 0.5 | ||||
0.5 | 0.5 | ||||
1.0 | 0.5 | ||||
0.0 | 1.0 | ||||
0.5 | 1.0 | ||||
1.0 | 1.0 |
SSIM ↑ | NMSE ↓ | UIQI ↑ | SCC ↑ | MaxAE ↓ | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | |||
✓ | 57,533.932 | 91,992.264 | ||||||||||
✓ | ✓ | 34,207.770 | 63,232.346 | |||||||||
✓ | ✓ | 55,961.351 | 89,127.842 | |||||||||
✓ | ✓ | ✓ | 30,228.780 | 57,173.855 |
Case | SSIM ↑ | NMSE ↓ | UIQI ↑ | SCC ↑ | MaxAE ↓ | |||||
---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | |
I | 101,071.325 | 228,636.166 | ||||||||
II | 60,317.179 | 160,407.888 | ||||||||
III | 57,533.932 | 91,992.264 | ||||||||
IV | 34,207.770 | 63,232.346 | ||||||||
V | 30,228.780 | 57,173.855 |
Train S Inventory | SSIM ↑ | NMSE ↓ | UIQI ↑ | SCC ↑ | MaxAE ↓ | |||||
---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | std | avg | std | avg | std | avg | std | |
BU-MEG-050 | 30,228.780 | 57,173.855 | ||||||||
BU-MEG-025 | 32,889.449 | 63,612.669 |
Train S Inventory | SSIM ↑ | NMSE ↓ | UIQI ↑ | SCC ↑ | MaxAE ↓ | |||||
---|---|---|---|---|---|---|---|---|---|---|
avg | std | avg | center | avg | std | avg | std | avg | std | |
BU-MEG-050 | 37,153.544 | 67,031.764 | ||||||||
BU-MEG-025 | 42,370.648 | 75,528.448 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giganti, A.; Mandelli, S.; Bestagini, P.; Tubaro, S. Learn from Simulations, Adapt to Observations: Super-Resolution of Isoprene Emissions via Unpaired Domain Adaptation. Remote Sens. 2024, 16, 3963. https://doi.org/10.3390/rs16213963
Giganti A, Mandelli S, Bestagini P, Tubaro S. Learn from Simulations, Adapt to Observations: Super-Resolution of Isoprene Emissions via Unpaired Domain Adaptation. Remote Sensing. 2024; 16(21):3963. https://doi.org/10.3390/rs16213963
Chicago/Turabian StyleGiganti, Antonio, Sara Mandelli, Paolo Bestagini, and Stefano Tubaro. 2024. "Learn from Simulations, Adapt to Observations: Super-Resolution of Isoprene Emissions via Unpaired Domain Adaptation" Remote Sensing 16, no. 21: 3963. https://doi.org/10.3390/rs16213963
APA StyleGiganti, A., Mandelli, S., Bestagini, P., & Tubaro, S. (2024). Learn from Simulations, Adapt to Observations: Super-Resolution of Isoprene Emissions via Unpaired Domain Adaptation. Remote Sensing, 16(21), 3963. https://doi.org/10.3390/rs16213963