Mapping the Normalized Difference Vegetation Index for the Contiguous U.S. Since 1850 Using 391 Tree-Ring Plots
Abstract
:1. Introduction
2. Study Areas and Data Sources
3. Methods
3.1. Tree-Ring Data Collection and Processing
3.2. Remote Sensing Data Processing
3.3. Point-by-Point Regression
3.3.1. Nested Reconstruction (Defining a Temporal Range)
3.3.2. Choosing Surrounding Plots (Defining a Spatial Range)
3.4. Regression Selection and Evaluation
3.5. Statistics Analysis
4. Results
4.1. Regression Model Performances
4.2. NDVI Temporal Differences in the U.S.
4.3. NDVI Spatial Differences in the Contiguous U.S.
4.4. Correlations Between Climate Factors and NDVI
5. Discussion
5.1. Evaluating Our NDVI Models
5.2. Spatial–Temporal NDVI Variations in the U.S.
5.3. Climate Drivers of NDVI Change
5.4. Limitation and Future Studies
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pathak, M.; Slade, R.; Shukla, P.R.; Skea, J.; Pichs-Madruga, R.; Ürge-Vorsatz, D. Technical summary. Climate Change 2022. pp. 49–147. Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_TechnicalSummary.pdf (accessed on 2 May 2024).
- Pauw, K.; Thurlow, J.; Bachu, M.; Van Seventer, D.E. The economic costs of extreme weather events: A hydrometeorological CGE analysis for Malawi. Environ. Dev. Econ. 2011, 16, 177–198. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160135. [Google Scholar] [CrossRef] [PubMed]
- Mills, D.M. Climate change, extreme weather events, and us health impacts: What can we say? J. Occup. Environ. Med. 2009, 51, 26–32. [Google Scholar] [CrossRef]
- Shenoy, S.; Gorinevsky, D.; Trenberth, K.E.; Chu, S. Trends of extreme US weather events in the changing climate. Proc. Natl. Acad. Sci. USA 2022, 119, e2207536119. [Google Scholar] [CrossRef] [PubMed]
- Fettig, C.J.; Mortenson, L.A.; Bulaon, B.M.; Foulk, P.B. Tree mortality following drought in the central and southern Sierra Nevada, California, US. For. Ecol. Manag. 2019, 432, 164–178. [Google Scholar] [CrossRef]
- Zerlin, R.R.; Elissetche, J.C.; Campbell, T.A.; Patrock, R.J.; Wester, D.B.; Rideout-Hanzak, S. Extreme weather impacts on butterfly populations in Southern Texas, USA. J. Insect Conserv. 2024, 28, 89–102. [Google Scholar] [CrossRef]
- Goward, S.; Arvidson, T.; Williams, D.; Faundeen, J.; Irons, J.; Franks, S. Historical record of Landsat global coverage. Photogramm. Eng. Remote Sens. 2006, 72, 1155–1169. [Google Scholar] [CrossRef]
- LaMarche, V.C., Jr. Environment in relation to age of bristlecone pines. Ecology 1969, 50, 53–59. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth-Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- García-Mora, T.J.; Mas, J.F.; Hinkley, E.A. Land cover mapping applications with MODIS: A literature review. Int. J. Digit. Earth 2012, 5, 63–87. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cook, E.R.; Cleaveland, M.K.; Therrell, M.D.; Meko, D.M.; Grissino-Mayer, H.D.; Watonn, E.; Luckman, B.H. Tree-ring data document 16th century megadrought over North America. EOS Trans. Am. Geophys. Union 2000, 81, 121–125. [Google Scholar] [CrossRef]
- Li, H.; Speer, J.H.; Malubeni, C.C.; Wilson, E. Reconstructing a Fine Resolution Landscape of Annual Gross Primary Product (1895–2013) with Tree-Ring Indices. Remote Sens. 2024, 16, 3744. [Google Scholar] [CrossRef]
- Briffa, K.R.; Jones, P.D.; Schweingruber, F.H. Summer temperatures across northern North America: Regional reconstructions from 1760 using tree-ring densities. J. Geophys. Res. Atmos. 1994, 99, 25835–25844. [Google Scholar] [CrossRef]
- D’Arrigo, R.D.; Malmstrom, C.M.; Jacoby, G.C.; Los, S.O.; Bunker, D.E. Correlation between maximum latewood density of annual tree rings and NDVI based estimates of forest productivity. Int. J. Remote Sens. 2000, 21, 2329–2336. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; D’arrigo, R.D.; Paletta, L.F.; Tian, H.Q.; Jolly, W.M.; Myneni, R.B. Identifying climatic controls on ring width: The timing of correlations between tree rings and NDVI. Earth Interact. 2008, 12, 1–14. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, R.; Lu, B.; Mambetov, B.T.; Kelgenbayev, N.; Dosmanbetov, D.; Maisupovva, B.; Chen, F.; Shang, H.; Huang, L. Picea schrenkiana tree-ring chronologies development and vegetation index reconstruction for the Alatau Mountains, Central Asia. Geochronometria 2018, 45, 107–118. [Google Scholar] [CrossRef]
- Liang, E.Y.; Shao, X.M.; He, J.C. Relationships between tree growth and NDVI of grassland in the semi-arid grassland of north China. Int. J. Remote Sens. 2005, 26, 2901–2908. [Google Scholar] [CrossRef]
- Li, H.; Thapa, I.; Speer, J.H. Fine-scale NDVI reconstruction back to 1906 from tree-rings in the greater Yellowstone ecosystem. Forests 2021, 12, 1324. [Google Scholar] [CrossRef]
- Cook, E.R.; Meko, D.M.; Stahle, D.W.; Cleaveland, M.K. Drought reconstructions for the continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef]
- Li, H.; Speer, J.H.; Thapa, I. Reconstructing and mapping annual net primary productivity (NPP) since 1940 using tree rings in Southern Indiana, US. J. Geophys. Res. Biogeosciences 2024, 129, e2023JG007929. [Google Scholar] [CrossRef]
- Seiler, R.; Kirchner, J.W.; Krusic, P.J.; Tognetti, R.; Houlie, N.; Andronico, D.; Cullotta, S.; Egli, M.; D’Arrigo, R.; Cherubini, P. Insensitivity of tree-ring growth to temperature and precipitation sharpens the puzzle of enhanced pre-eruption NDVI on Mt. Etna (Italy). PLoS ONE 2017, 12, e0169297. [Google Scholar] [CrossRef] [PubMed]
- Hoogesteger, J.; Karlsson, P.S. Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa). Funct. Ecol. 1992, 6, 317–323. [Google Scholar] [CrossRef]
- Speer, J.H. Fundamentals of Tree-Ring Research; University of Arizona Press: Tucson, AZ, USA, 2010. [Google Scholar]
- Cook, E.R.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 1981, 41, 45–53. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; IEEE: New York, NY, USA, 1995; Volume 1, pp. 278–282. [Google Scholar]
- Spiess, A.N.; Neumeyer, N. An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach. BMC Pharmacol. 2010, 10, 6. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Stahle, D.W.; Fye, F.K.; Cook, E.R.; Griffin, R.D. Tree-ring reconstructed megadroughts over North America since AD 1300. Clim. Chang. 2007, 83, 133–149. [Google Scholar] [CrossRef]
- Munroe, J.S. Estimates of Little Ice Age climate inferred through historical rephotography, northern Uinta Mountains, USA. Arct. Antarct. Alp. Res. 2003, 35, 489–498. [Google Scholar] [CrossRef]
- Rochner, M.L.; Heeter, K.J.; Harley, G.L.; Bekker, M.F.; Horn, S.P. Climate-induced treeline mortality during the termination of the Little Ice Age in the Greater Yellowstone Ecoregion, USA. Holocene 2021, 31, 1288–1303. [Google Scholar] [CrossRef]
- Lozano-García MD, S.; Caballero, M.; Ortega, B.; Rodríguez, A.; Sosa, S. Tracing the effects of the Little Ice Age in the tropical lowlands of eastern Mesoamerica. Proc. Natl. Acad. Sci. USA 2007, 104, 16200–16203. [Google Scholar] [CrossRef] [PubMed]
- Bolles, K.C.; Forman, S.L. Evaluating landscape degradation along climatic gradients during the 1930s dust bowl drought from panchromatic historical aerial photographs, United States Great Plains. Front. Earth Sci. 2018, 6, 153. [Google Scholar] [CrossRef]
- Baumhardt, R.L.; Stewart, B.A.; Sainju, U.M. North American soil degradation: Processes, practices, and mitigating strategies. Sustainability 2015, 7, 2936–2960. [Google Scholar] [CrossRef]
- Pompa-García, M.; Camarero, J.J.; Colangelo, M.; González-Cásares, M. Inter and intra-annual links between climate, tree growth and NDVI: Improving the resolution of drought proxies in conifer forests. Int. J. Biometeorol. 2021, 65, 2111–2121. [Google Scholar] [CrossRef]
- Adams, A.B.; Pontius, J.; Galford, G.; Gudex-Cross, D. Simulating forest cover change in the northeastern US: Decreasing forest area and increasing fragmentation. Landsc. Ecol. 2019, 34, 2401–2419. [Google Scholar] [CrossRef]
- Mdluli, M.V.; Bhembe, Z.D.; Brown, L.; MacFadyen, D.N.; Themb’alilahlwa, A.M.; Monadjem, A. The loss of vegetation cover has distinct but short-term impact on multiple vertebrate taxa in a grassland ecosystem. Glob. Ecol. Conserv. 2022, 38, e02198. [Google Scholar] [CrossRef]
- Bertler, N.A.N.; Mayewski, P.A.; Carter, L. Cold conditions in Antarctica during the Little Ice Age—Implications for abrupt climate change mechanisms. Earth Planet. Sci. Lett. 2011, 308, 41–51. [Google Scholar] [CrossRef]
- Li, X.; Tian, H.; Lu, C.; Pan, S. Four-century history of land transformation by humans in the United States (1630–2020): Annual and 1 km grid data for the HIStory of LAND changes (HISLAND-US). Earth Syst. Sci. Data. 2023, 15, 1005–1035. [Google Scholar] [CrossRef]
- Park, S.Y.; Yoo, J.W.; Song, S.K.; Kim, C.H.; Lee, S.H. Numerical study on advective fog formation and its characteristic associated with cold water upwelling. PLoS ONE 2022, 17, e0267895. [Google Scholar] [CrossRef]
- Visher, S.S. Sunshine and Cloudiness in the United States. Sci. Mon. 1944, 58, 72–77. [Google Scholar]
- Visher, S.S. Wet seasons in the United States: How wet and how frequent. Ecology 1950, 31, 292–303. [Google Scholar] [CrossRef]
- Engström, J.; Jafarzadegan, K.; Moradkhani, H. Drought vulnerability in the United States: An integrated assessment. Water 2020, 12, 2033. [Google Scholar] [CrossRef]
- Tian, L.; Quiring, S.M. Spatial and temporal patterns of drought in Oklahoma (1901–2014). Int. J. Climatol. 2019, 39, 3365–3378. [Google Scholar] [CrossRef]
- Bowling, L.C.; Cherkauer, K.A.; Lee, C.I.; Beckerman, J.L.; Brouder, S.; Buzan, J.R.; Doering, O.C.; Dukes, J.S.; Ebner, P.D.; Frankenberger, J.R.; et al. Agricultural impacts of climate change in Indiana and potential adaptations. Clim. Chang. 2020, 163, 2005–2027. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Luo, T.; Wang, X.; Wang, A.; Zhang, D. Reconstruction of NDVI based on Larix gmelinii tree-rings during June–September 1759–2021. Front. For. Glob. Chang. 2024, 7, 1283956. [Google Scholar] [CrossRef]
- Wang, H.; Chen, F.; Zhang, R.; Qin, L. Seasonal dynamics of vegetation of the central Loess Plateau (China) based on tree rings and their relationship to climatic warming. Environ. Dev. Sustain. 2017, 19, 2535–2546. [Google Scholar] [CrossRef]
Order | Training Set (24) | Validation Set (6) | Validation Year |
---|---|---|---|
Fold 1 | 1987–2010 | 1981–1986 | 1985 |
Fold 2 | 1981–1986, 1993–2010 | 1987–1992 | 1990 |
Fold 3 | 1981–1993, 1999–2010 | 1993–1998 | 1995 |
Fold 4 | 1981–1998, 2005–2010 | 1999–2004 | 2000 |
Fold 5 | 1981–2004 | 2005–2010 | 2005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Thapa, I.; Xu, S.; Yang, P. Mapping the Normalized Difference Vegetation Index for the Contiguous U.S. Since 1850 Using 391 Tree-Ring Plots. Remote Sens. 2024, 16, 3973. https://doi.org/10.3390/rs16213973
Li H, Thapa I, Xu S, Yang P. Mapping the Normalized Difference Vegetation Index for the Contiguous U.S. Since 1850 Using 391 Tree-Ring Plots. Remote Sensing. 2024; 16(21):3973. https://doi.org/10.3390/rs16213973
Chicago/Turabian StyleLi, Hang, Ichchha Thapa, Shuang Xu, and Peisi Yang. 2024. "Mapping the Normalized Difference Vegetation Index for the Contiguous U.S. Since 1850 Using 391 Tree-Ring Plots" Remote Sensing 16, no. 21: 3973. https://doi.org/10.3390/rs16213973
APA StyleLi, H., Thapa, I., Xu, S., & Yang, P. (2024). Mapping the Normalized Difference Vegetation Index for the Contiguous U.S. Since 1850 Using 391 Tree-Ring Plots. Remote Sensing, 16(21), 3973. https://doi.org/10.3390/rs16213973