Mountain Landslide Monitoring Using a DS-InSAR Method Incorporating a Spatio-Temporal Atmospheric Phase Screen Correction Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistically Homogeneous Pixels and Temporal Phase Optimization
2.2. Prophet_ZTD-NEF APS Correction Model
3. Test Sites and Datasets
3.1. Geological Setting
3.2. Datasets
4. Results
4.1. DSI Method Performance Evaluation
4.2. APS Corrected Time-Series InSAR
4.2.1. Overall Assessment of APS Improvement
4.2.2. Mitigation of Topography De-Correlation Effects
4.3. Accuracy Assessment of DSI Measurements
4.3.1. PSI, SBAS, and DSI Cross-Comparison
4.3.2. Validation of DSI Measured Deformation Velocity Using GPS Measurements
5. Discussion
5.1. Spatial Distribution of the Landslide Deformation
5.2. Analysis of Factors Affecting Landslide Instability
5.2.1. Effects of Geological Tectonic Movements
5.2.2. Response Analysis with Rainfall
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekaert, D.P.S.; Handwerger, A.L.; Agram, P.; Kirschbaum, D.B. InSAR-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to Nepal. Remote Sens. Environ. 2020, 249, 111983. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Tang, M.; Liao, M.; Xu, Q.; Gong, J.; Ao, M. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sens. Environ. 2018, 205, 180–198. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Zêzere, J.L.; Catalão, J.; Nico, G. The contribution of PSInSAR interferometry to landslide hazard in weak rock-dominated areas. Landslides 2015, 12, 703–719. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.L.; Hu, J.; Li, Z.W.; Zhu, J.J. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sens. Environ. 2014, 156, 45–57. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Carnec, C.; Massonnet, D.; King, C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophys. Res. Lett. 1996, 23, 3579–3582. [Google Scholar] [CrossRef]
- Catani, F.; Farina, P.; Moretti, S.; Nico, G.; Strozzi, T. On the application of SAR interferometry to geomorphological studies: Estimation of landform attributes and mass movements. Geomorphology. 2005, 66, 119–131. [Google Scholar] [CrossRef]
- Liao, M.S.; Tang, J.; Wang, T.; BALZ, T.; Zhang, L. Landslide monitoring with high-resolution SAR data in the Three Gorges region. Sci. China Earth Sci. 2012, 55, 590–601. [Google Scholar] [CrossRef]
- Yin, Y.P.; Zheng, W.M.; Liu, Y.P.; Zhang, J.L.; Li, X.C. Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides. 2010, 7, 359–365. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoe. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar interferometry: Data interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 161–196. [Google Scholar]
- Xu, B.; Li, Z.W.; Wang, Q.J.; Jiang, M. A Refined Strategy for Removing Composite Errors of SAR Interferogram. IEEE Geosci. Remote Sens. Lett. 2014, 11, 143–147. [Google Scholar] [CrossRef]
- Jolivet, R.; Simons, M. A multi-pixel time series analysis method accounting for ground motion, atmospheric noise and orbital errors. Geophys. Res. Lett. 2018, 45, 1814–1824. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical comparison of InSAR tropospheric correction techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Hooper, A.; Wright, T. A spatially variable power-law tropospheric correction technique for InSAR data. J. Geophys. Res. 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Liao, M.S.; Gong, J.Y. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sens. Environ. 2019, 233, 111370. [Google Scholar] [CrossRef]
- Jolivet, R.; Agram, P.S.; Lin, N.Y.; Simons, M.; Doin, M.P.; Peltzer, G.; Li, Z.H. Improving InSAR geodesy using Global Atmospheric Models. J. Geophys. Res. 2014, 119, 2324–2341. [Google Scholar] [CrossRef]
- Wang, S.; Lu, Z.; Wang, B.; Niu, Y.; Song, C.; Li, X.; Xu, C. A Phase-based InSAR tropospheric correction method for interseismic deformation based on short-period interferograms. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5212318. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Foroughnia, F.; Nemati, S.; Maghsoudi, Y.; Perissin, D. An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. Int. J. Appl. Earth. Obs. 2019, 74, 248–258. [Google Scholar] [CrossRef]
- Ramirez, R.A.; Lee, G.J.; Choi, S.K.; Kwon, T.H.; Kim, Y.C.; Ryu, H.H.; Hyun, C. Monitoring of construction-induced urban ground deformations using Sentinel-1 PS-InSAR: The case study of tunneling in Dangjin, Korea. Int. J. Appl. Earth. Obs. 2022, 108, 102721. [Google Scholar]
- Sun, H.; Zhang, Q.; Zhao, C.; Yang, C.; Sun, Q.; Chen, W. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sens. Environ. 2017, 188, 73–84. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 16. [Google Scholar] [CrossRef]
- Goel, K.; Adam, N. A distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5454–5468. [Google Scholar] [CrossRef]
- Jiang, M.; Ding, X.L.; Hanssen, R.; Malhotra, R.; Chang, L. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1213–1224. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Ma, P.; Cui, Y.; Wang, W.; Lin, H.; Zhang, Y.; Zheng, Y. Landslide Movement Monitoring with InSAR Technologies. Landslides 2022, 161, 1–22. [Google Scholar]
- Wu, Z.; Ma, P.; Zheng, Y.; Gu, F.; Liu, L.; Lin, H. Automatic detection and classification of land subsidence in deltaic metropolitan areas using distributed scatterer InSAR and Oriented R-CNN. Remote Sens. Environ. 2023, 290, 113545. [Google Scholar] [CrossRef]
- Shan, M.; Raspini, F.; Del Soldato, M.; Cruz, A.; Casagli, N. Mapping and Pre-and Post-Failure Analyses of the April 2019 Kantutani Landslide in La Paz, Bolivia, Using Synthetic Aperture Radar Data. Remote Sens. 2023, 15, 5311. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, P.; Lin, H.; Wang, W.; Shi, G. Distributed scatterer InSAR reveals surface motion of the ancient Chaoshan residence cluster in the Lianjiang Plain, China. Remote Sens. 2019, 11, 166. [Google Scholar] [CrossRef]
- Jiang, M.; Miao, Z.; Gamba, P.; Yong, B. Application of multitemporal InSAR covariance and information fusion to robust road extraction. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3611–3622. [Google Scholar] [CrossRef]
- Goel, K.; Adam, N. An advanced algorithm for deformation estimation in non-urban areas. ISPRS J. photogram. Remote Sens. 2012, 73, 100–110. [Google Scholar] [CrossRef]
- Parizzi, A.; Brcic, R. Adaptive InSAR stack multilooking exploiting amplitude statistics: A comparison between different techniques and practical results. IEEE Geosci. Remote Sens. Lett. 2010, 8, 441–445. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, C.; Li, Z.; He, X. Statistical assessment metrics for InSAR atmospheric correction: Applications to generic atmospheric correction online service for InSAR (GACOS) in Eastern China. Int. J. Appl. Earth. Obs. 2021, 96, 102289. [Google Scholar] [CrossRef]
- Jung, J.; Kim, D.J.; Park, S.E. Correction of atmospheric phase screen in time series InSAR using WRF model for monitoring volcanic activities. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2678–2689. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, L.; Ding, X.; Lu, Z.; Li, X. Toward mitigating stratified tropospheric delays in multitemporal InSAR: A quadtree aided joint model. IEEE Trans. Geosci. Remote Sens. 2018, 57, 291–303. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, L.; Lu, Z.; Li, X. Correction of spatially varying stratified atmospheric delays in multitemporal InSAR. Remote Sens. Environ. 2023, 285, 113382. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Z.; Amelung, F. Mapping ground displacement by a multiple phase difference-based InSAR approach: With stochastic model estimation and turbulent troposphere mitigation. J. Geod. 2019, 93, 1313–1333. [Google Scholar] [CrossRef]
- Jolivet, R.; Grandin, R.; Lasserre, C.; Doin, M.P.; Peltzer, G. Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys. Res. Lett. 2011, 38, 17. [Google Scholar] [CrossRef]
- Guo, S.; Zuo, X.; Wu, W.; Li, F.; Li, Y.; Yang, X.; Zhao, Y. Ground Deformation in Yuxi Basin Based on Atmosphere-Corrected Time-Series InSAR Integrated with the Latest Meteorological Reanalysis Data. Remote Sens. 2022, 14, 5638. [Google Scholar] [CrossRef]
- Tang, W.; Yuan, P.; Liao, M.; Balz, T. Investigation of ground deformation in Taiyuan Basin, China from 2003 to 2010, with atmosphere-corrected time series insar. Remote Sens. 2018, 10, 1499. [Google Scholar] [CrossRef]
- Guo, S.; Zuo, X.; Wu, W.; Yang, X.; Zhang, J.; Li, Y.; Huang, C.; Bu, J.; Zhu, S. Mitigation of tropospheric delay induced errors in TS-InSAR ground deformation monitoring. Int. J. Digit Earth 2024, 17, 2316107. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.A.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, 1–5. [Google Scholar] [CrossRef]
- Sousa, J.J.; Hooper, A.J.; Hanssen, R.F.; Bastos, L.C.; Ruiz, A.M. Persistent scatterer insar: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens. Environ. 2011, 115, 2652–2663. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Zhang, Q.; Alamdari, M.M. Assessment of the accuracy among the common persistent scatterer and distributed scatterer based on SqueeSAR method. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1877–1881. [Google Scholar] [CrossRef]
- Guarnieri, A.M.; Tebaldini, S. On the exploitation of target statistics for SAR interferometry applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3436–3443. [Google Scholar] [CrossRef]
- Li, W.; Yuan, Y.; Ou, J.; He, Y. IGGtrop_SH and IGGtrop_rH: Two improved empirical tropospheric delay models based on vertical reduction functions. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5276–5288. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2007, 24, 2737–2747. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, S.; Tao, Q.; Liu, G.; Hao, H.; Wang, K.; Zhou, C. A method of monitoring three-dimensional ground displacement in mining areas by integrating multiple InSAR methods. Int. J. Remote Sens. 2018, 39, 1199–1219. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; William, Z.S. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng. Geol. 2008, 102, 99–111. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Max topo error | 35 | Weed time win | 365 |
Select method | Percent | Unwrap method | 3D |
Percent rand | 20 | GAMMA iterations | 6 |
Weed max noise | 2 | Unwrap grid size | 25 |
Methods | Number of MPs | Spatial Density (MPs/km2) |
---|---|---|
PSI | 44,307 | 51 |
SBAS | 79,734 | 92 |
DSI | 367,512 | 424 |
GPS Number | Original mm/yr | GACOS mm/yr | PZTD-NEF mm/yr | Prophet_ZTD-NEF mm/yr |
---|---|---|---|---|
1 | 5.39 | 5.18 | 4.33 | 4.52 |
2 | 7.69 | 7.59 | 7.87 | 7.57 |
3 | 3.48 | 3.49 | 3.87 | 3.15 |
4 | 10.03 | 9.90 | 9.91 | 9.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Zuo, X.; Zhang, J.; Yang, X.; Huang, C.; Yue, X. Mountain Landslide Monitoring Using a DS-InSAR Method Incorporating a Spatio-Temporal Atmospheric Phase Screen Correction Model. Remote Sens. 2024, 16, 4228. https://doi.org/10.3390/rs16224228
Guo S, Zuo X, Zhang J, Yang X, Huang C, Yue X. Mountain Landslide Monitoring Using a DS-InSAR Method Incorporating a Spatio-Temporal Atmospheric Phase Screen Correction Model. Remote Sensing. 2024; 16(22):4228. https://doi.org/10.3390/rs16224228
Chicago/Turabian StyleGuo, Shipeng, Xiaoqing Zuo, Jihong Zhang, Xu Yang, Cheng Huang, and Xuefu Yue. 2024. "Mountain Landslide Monitoring Using a DS-InSAR Method Incorporating a Spatio-Temporal Atmospheric Phase Screen Correction Model" Remote Sensing 16, no. 22: 4228. https://doi.org/10.3390/rs16224228