Enhanced Polarimetric Radar Vegetation Index and Integration with Optical Index for Biomass Estimation in Grazing Lands Across the Contiguous United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Remote Sensing Data
2.2. Enhanced/Normalized Polarimetric Radar Vegetation Index (NPRVI)
2.3. Dual-Polarization Synthetic Aperture Radar (SAR) Data
2.4. Machine Learning-Based Biomass Model
2.5. Model Accuracy Assessment
3. Results
3.1. Determining the CF and RF Scaling Factors
3.2. Correlation Analysis of NPRVI with Biomass and Optical Vegetation Index
3.3. Comparison of Machine Learning Models for Biomass Estimation
4. Discussion
4.1. Potential of Synergetic Use of Multi-Frequency NPRVI
4.2. Synergetic Use of Optical Sensor Data and Active Sensor Data in Grazing Land
4.3. Limitations of NPRVI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bean, A.R.; Coffin, A.W.; Arthur, D.K.; Baffaut, C.; Holifield Collins, C.; Goslee, S.C.; Ponce-Campos, G.E.; Sclater, V.L.; Strickland, T.C.; Yasarer, L.M. Regional Frameworks for the USDA Long-Term Agroecosystem Research Network. Front. Sustain. Food Syst. 2021, 4, 612785. [Google Scholar] [CrossRef]
- Odom, L.; Mazcko, K.; Derner, J.; Dell, C.; Carey, R.M.C.; Kucera, J.; Franzluebbers, A.; Knaebel, D.; Manter, D. Assessing and Managing for Soil Health on Rangelands and Pasture Lands. Available online: https://mdpi-res.com/data/mdpi_references_guide_v9.pdf (accessed on 24 November 2017).
- Kearney, S.P.; Porensky, L.M.; Augustine, D.J.; Gaffney, R.; Derner, J.D. Monitoring Standing Herbaceous Biomass and Thresholds in Semiarid Rangelands from Harmonized Landsat 8 and Sentinel-2 Imagery to Support within-Season Adaptive Management. Remote Sens. Environ. 2022, 271, 112907. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- McCord, S.; Williamson, J.; Allred, B.; Jones, M. Rangeland Analysis Platform: Monitor Rangelands Across the USA. Available online: https://www.sidalc.net/search/Record/dat-usda-us-article24856944/Description (accessed on 26 November 2024).
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Zumo, I.M.; Hashim, M.; Hassan, N. Mapping Grass Above-Ground Biomass of Grazing-Lands Using Satellite Remote Sensing. Geocarto Int. 2022, 37, 4843–4856. [Google Scholar] [CrossRef]
- Liu, S.; Brandt, M.; Nord-Larsen, T.; Chave, J.; Reiner, F.; Lang, N.; Tong, X.; Ciais, P.; Igel, C.; Pascual, A. The Overlooked Contribution of Trees Outside Forests to Tree Cover and Woody Biomass across Europe. Sci. Adv. 2023, 9, eadh4097. [Google Scholar] [CrossRef]
- Robinson, N.P.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Allred, B.W. Rangeland Productivity Partitioned to Sub-Pixel Plant Functional Types. Remote Sens. 2019, 11, 1427. [Google Scholar] [CrossRef]
- Jones, M.O.; Robinson, N.P.; Naugle, D.E.; Maestas, J.D.; Reeves, M.C.; Lankston, R.W.; Allred, B.W. Annual and 16-Day Rangeland Production Estimates for the Western United States. Rangel. Ecol. Manag. 2021, 77, 112–117. [Google Scholar] [CrossRef]
- Garroutte, E.L.; Hansen, A.J.; Lawrence, R.L. Using NDVI and EVI to Map Spatiotemporal Variation in the Biomass and Quality of Forage for Migratory Elk in the Greater Yellowstone Ecosystem. Remote Sens. 2016, 8, 404. [Google Scholar] [CrossRef]
- Chang, G.J.; Oh, Y.; Goldshleger, N.; Shoshany, M. Biomass Estimation of Crops and Natural Shrubs by Combining Red-Edge Ratio with Normalized Difference Vegetation Index. J. Appl. Remote Sens. 2022, 16, 014501. [Google Scholar] [CrossRef]
- Agram, P.S.; Warren, M.S.; Arko, S.A.; Calef, M.T. Radiometric Terrain Flattening of Geocoded Stacks of Sar Imagery. Remote Sens. 2023, 15, 1932. [Google Scholar] [CrossRef]
- Shiroma, G.H.X.; Lavalle, M.; Buckley, S.M. An Area-Based Projection Algorithm for SAR Radiometric Terrain Correction and Geocoding. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–23. [Google Scholar] [CrossRef]
- Lopes, A.; Touzi, R.; Nezry, E. Adaptive Speckle Filters and Scene Heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000. [Google Scholar] [CrossRef]
- Lee, J.-S.; Wen, J.-H.; Ainsworth, T.L.; Chen, K.-S.; Chen, A.J. Improved Sigma Filter for Speckle Filtering of SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2008, 47, 202–213. [Google Scholar]
- Kellogg, K.; Hoffman, P.; Standley, S.; Shaffer, S.; Rosen, P.; Edelstein, W.; Dunn, C.; Baker, C.; Barela, P.; Shen, Y. NASA-ISRO Synthetic Aperture Radar (NISAR) Mission. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2020; pp. 1–21. [Google Scholar]
- Quegan, S.; Le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.-F.; Minh, D.H.T.; Lomas, M.; D’alessandro, M.M.; Paillou, P.; Papathanassiou, K. The European Space Agency BIOMASS Mission: Measuring Forest above-Ground Biomass from Space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef]
- Yu, Y.; Saatchi, S. Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests. Remote Sens. 2016, 8, 522. [Google Scholar] [CrossRef]
- Kraatz, S.; Bourgeau-Chavez, L.; Battaglia, M.; Poley, A.; Siqueira, P. Mapping and Scaling of in Situ above Ground Biomass to Regional Extent with SAR in the Great Slave Region. Earth Space Sci. 2022, 9, e2022EA002431. [Google Scholar] [CrossRef]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A Review of Radar Remote Sensing for Biomass Estimation. Int. J. Environ. Sci. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using Satellite Radar Backscatter to Predict Above-ground Woody Biomass: A Consistent Relationship across Four Different African Landscapes. Geophys. Res. Lett. 2009, 36, 1–6. [Google Scholar] [CrossRef]
- Kellndorfer, J.M.; Walker, W.S.; LaPoint, E.; Kirsch, K.; Bishop, J.; Fiske, G. Statistical Fusion of Lidar, InSAR, and Optical Remote Sensing Data for Forest Stand Height Characterization: A Regional-scale Method Based on LVIS, SRTM, Landsat ETM+, and Ancillary Data Sets. J. Geophys. Res. Biogeosci. 2010, 115, 1–10. [Google Scholar] [CrossRef]
- Crabbe, R.A.; Lamb, D.W.; Edwards, C.; Andersson, K.; Schneider, D. A Preliminary Investigation of the Potential of Sentinel-1 Radar to Estimate Pasture Biomass in a Grazed Pasture Landscape. Remote Sens. 2019, 11, 872. [Google Scholar] [CrossRef]
- De Melo, C.; Bremm, C.; Carvalho, P.C.D.F. Combining Optical Orbital, Sar and Meteorological Data to Classify Pasture by Heights and Estimate Biomass Using Random Forest. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4994588 (accessed on 24 October 2024).
- Vahidi, M.; Shafian, S.; Thomas, S.; Maguire, R. Estimation of Bale Grazing and Sacrificed Pasture Biomass through the Integration of Sentinel Satellite Images and Machine Learning Techniques. Remote Sens. 2023, 15, 5014. [Google Scholar] [CrossRef]
- Chang, J.; Shoshany, M. Mediterranean Shrublands Biomass Estimation Using Sentinel-1 and Sentinel-2. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5300–5303. [Google Scholar]
- Corley, I.; Robinson, C.; Dodhia, R.; Ferres, J.M.L.; Najafirad, P. Revisiting Pre-Trained Remote Sensing Model Benchmarks: Resizing and Normalization Matters. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 17–18 June 2024; pp. 3162–3172. [Google Scholar]
- Chang, J.G.; Shoshany, M.; Oh, Y. Polarimetric Radar Vegetation Index for Biomass Estimation in Desert Fringe Ecosystems. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7102–7108. [Google Scholar] [CrossRef]
- Yifru, B.A.; Chung, I.-M.; Kim, M.-G.; Chang, S.W. Assessing the Effect of Urbanization on Regional-Scale Surface Water-Groundwater Interaction and Nitrate Transport. Sci. Rep. 2022, 12, 12520. [Google Scholar] [CrossRef] [PubMed]
- Cloude, S.R.; Pettier, E. A Review of Target Decomposition Theorems in Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Zyl, J.; Kim, Y. On the Relationship Between Polarimetric Parameters. In Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 24–28 July 2000. [Google Scholar]
- Ulaby, F.T.; Long, D. Microwave Radar and Radiometric Remote Sensing; Artech House: Norwood, MA, USA, 2015; ISBN 978-0472119356. [Google Scholar]
- Chang, J.; Shoshany, M. Radar Polarization and Ecological Pattern Properties across Mediterranean-to-Arid Transition Zone. Remote Sens. Environ. 2017, 200, 368–377. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic Accuracy Assessment of the NLCD 2019 Land Cover for the Conterminous United States. GISci. Remote Sens. 2023, 60, 2181143. [Google Scholar] [CrossRef]
- Loveland, T.R.; Merchant, J.M. Ecoregions and Ecoregionalization: Geographical and Ecological Perspectives. Environ. Manag. 2004, 34, S1–S13. [Google Scholar] [CrossRef]
- Santoro, M.; Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-Ground Biomass for the Years 2010 2017 2018 2019 and 2020; Centre for Environmental Data Analysis (CEDA): Oxford, UK, 2023. [Google Scholar]
- Masek, J.; Ju, J.; Roger, J.; Skakun, S.; Vermote, E.; Claverie, M.; Dungan, J.; Yin, Z.; Freitag, B.; Justice, C. HLS Operational Land Imager Surface Reflectance and TOA Brightness Daily Global 30 m v2. 0. NASA EOSDIS L. Process. DAAC 2021. [Google Scholar] [CrossRef]
- Santi, E.; Paloscia, S.; Pettinato, S.; Fontanelli, G.; Mura, M.; Zolli, C.; Maselli, F.; Chiesi, M.; Bottai, L.; Chirici, G. The Potential of Multifrequency SAR Images for Estimating Forest Biomass in Mediterranean Areas. Remote Sens. Environ. 2017, 200, 63–73. [Google Scholar] [CrossRef]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating Forest Biomass to SAR Data. IEEE Trans. Geosci. Remote Sens. 1992, 30, 403–411. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Sarabandi, K.; Nashashibi, A. Statistical Properties off the Mueller Matrix off Distributed Targets. In IEE Proceedings F (Radar and Signal Processing); IET: London, UK, 1992; Volume 139, pp. 136–146. [Google Scholar]
- Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Maximum a Posteriori Speckle Filtering and First Order Texture Models in SAR Images. In Proceedings of the 10th Annual International Symposium on Geoscience and Remote Sensing, College Park, MD, USA, 20–24 May 1990; pp. 2409–2412. [Google Scholar]
- Kraatz, S.; Torbick, N.; Jiao, X.; Huang, X.; Robertson, L.D.; Davidson, A.; McNairn, H.; Cosh, M.H.; Siqueira, P. Comparison between Dense L-Band and C-Band Synthetic Aperture Radar (SAR) Time Series for Crop Area Mapping over a NISAR Calibration-Validation Site. Agronomy 2021, 11, 273. [Google Scholar] [CrossRef]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground Biomass Retrieval in Tropical Forests—The Potential of Combined X- and L-Band SAR Data Use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The Use of Machine Learning Methods to Estimate Aboveground Biomass of Grasslands: A Review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Chang, G.J. Biodiversity Estimation by Environment Drivers Using Machine/Deep Learning for Ecological Management. Ecol. Inform. 2023, 78, 102319. [Google Scholar] [CrossRef]
- Pichler, M.; Hartig, F. Machine Learning and Deep Learning—A Review for Ecologists. Methods Ecol. Evol. 2023, 14, 994–1016. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the IJCAI, Montreal, QC, Canada, 20–25 August 1995; Volume 14, pp. 1137–1145. [Google Scholar]
- Chang, G.J.; Oh, Y.; Shoshany, M. Biomass Estimation along a Climatic Gradient Using Multi-Frequency Polarimetric Radar Vegetation Index. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 5, 369–374. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive. Volume 3-From Theory to Applications; Artech House: Norwood, MA, USA, 1986; ISBN 978-0890061923. [Google Scholar]
- Ferrazzoli, P.; Paloscia, S.; Pampaloni, P.; Schiavon, G.; Sigismondi, S.; Solimini, D. The Potential of Multifrequency Polarimetric Sar in Assessing Agricultural and Arboreous Biomass. IEEE Trans. Geosci. Remote Sens. 1997, 35, 5–17. [Google Scholar] [CrossRef]
- Pacheco, A.; McNairn, H.; Li, Y.; Lampropoulos, G.; Powers, J. Using RADARSAT-2 and TerraSAR-X Satellite Data for the Identification of Canola Crop Phenology. In Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII; SPIE: Bellingham, WA, USA, 2016; Volume 9998, p. 999802. [Google Scholar]
- MacDougall, A.S.; Esch, E.; Chen, Q.; Carroll, O.; Bonner, C.; Ohlert, T.; Siewert, M.; Sulik, J.; Schweiger, A.K.; Borer, E.T. Widening Global Variability in Grassland Biomass since the 1980s. Nat. Ecol. Evol. 2024, 8, 1877–1888. [Google Scholar] [CrossRef]
- Chang, G.J.; Cirone, R.; Zhao, H.; Gao, F.; Anderson, M. Enhancing Grazing Land Analysis through Integrated Earth Observation and Machine Learning. In Proceedings of the 2024 12th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Novi Sad, Serbia, 15–18 July 2024; pp. 1–4. [Google Scholar]
- Guillevic, P.C.; Aouizerats, B.; Burger, R.; Den Besten, N.; Jackson, D.; Ridderikhoff, M.; Zajdband, A.; Houborg, R.; Franz, T.E.; Robertson, G.P. Planet’s Biomass Proxy for Monitoring Aboveground Agricultural Biomass and Estimating Crop Yield. Field Crops Res. 2024, 316, 109511. [Google Scholar] [CrossRef]
- Rapiya, M.; Ramoelo, A.; Truter, W. Seasonal Evaluation and Mapping of Aboveground Biomass in Natural Rangelands Using Sentinel-1 and Sentinel-2 Data. Environ. Monit. Assess. 2023, 195, 1544. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Pierdicca, N.; Davidson, M.; Chini, M.; Dierking, W.; Djavidnia, S.; Haarpaintner, J.; Hajduch, G.; Laurin, G.V.; Lavalle, M.; López-Martínez, C. The Copernicus L-Band SAR Mission ROSE-L (Radar Observing System for Europe) (Conference Presentation). In Active and Passive Microwave Remote Sensing for Environmental Monitoring III; SPIE: Bellingham, WA, USA, 2019; Volume 11154, p. 111540E. [Google Scholar]
SAR Variables | Grazing Lands | Cultivated Cropland | Tree Forest | Vegetated (CONUS) | ||||
---|---|---|---|---|---|---|---|---|
Mean | Std. | Mean | Std. | Mean | Std. | Mean | Std. | |
DOP(C-band) | 0.368 | 0.089 | 0.343 | 0.114 | 0.336 | 0.085 | 0.341 | 0.091 |
(C-band) (dB) | −23.220 | 1.620 | −21.060 | 5.830 | −20.530 | 3.450 | −21.175 | 4.215 |
DOP (L-band) | 0.700 | 0.143 | 0.695 | 0.163 | 0.615 | 0.198 | 0.649 | 0.185 |
(L-band) (dB) | −20.495 | 5.895 | −19.300 | 5.850 | −16.180 | 5.980 | −17.720 | 6.210 |
Input Variables and Biomass Range | MLR | RFM | XGBoost | DNN | |||||
---|---|---|---|---|---|---|---|---|---|
R2 | MAE | R2 | MAE | R2 | MAE | R2 | MAE | ||
Low | NDVIs | 0.027 | 110.0 | 0.224 | 89.9 | 0.065 | 96.9 | 0.259 | 89.0 |
Biomass | NPRVIs | 0.029 | 110.0 | −0.045 | 111.8 | −0.235 | 117.8 | 0.027 | 110.3 |
Range | Both VIs | 0.048 | 108.2 | 0.270 | 87.5 | 0.158 | 92.1 | 0.258 | 89.3 |
Medium | NDVIs | 0.187 | 254.4 | 0.362 | 212.4 | 0.298 | 221.7 | 0.325 | 224.2 |
Biomass | NPRVIs | 0.088 | 276.5 | 0.049 | 278.6 | −0.015 | 284.6 | 0.107 | 272.9 |
Range | Both VIs | 0.224 | 244.5 | 0.412 | 201.6 | 0.340 | 212.9 | 0.395 | 210.9 |
High | NDVIs | 0.274 | 578.0 | 0.309 | 556.2 | 0.227 | 590.9 | 0.274 | 581.3 |
Biomass | NPRVIs | 0.153 | 641.7 | 0.135 | 635.7 | 0.002 | 674.1 | 0.150 | 644.4 |
Range | Both VIs | 0.288 | 573.6 | 0.366 | 530.1 | 0.285 | 561.3 | 0.288 | 574.7 |
Full | NDVIs | 0.381 | 621.3 | 0.417 | 557.6 | 0.346 | 579.2 | 0.414 | 583.0 |
Biomass | NPRVIs | 0.153 | 773.8 | 0.162 | 750.4 | 0.075 | 770.9 | 0.206 | 746.5 |
Range | Both VIs | 0.387 | 618.0 | 0.511 | 498.4 | 0.462 | 520.6 | 0.501 | 526.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, J.G.; Kraatz, S.; Anderson, M.; Gao, F. Enhanced Polarimetric Radar Vegetation Index and Integration with Optical Index for Biomass Estimation in Grazing Lands Across the Contiguous United States. Remote Sens. 2024, 16, 4476. https://doi.org/10.3390/rs16234476
Chang JG, Kraatz S, Anderson M, Gao F. Enhanced Polarimetric Radar Vegetation Index and Integration with Optical Index for Biomass Estimation in Grazing Lands Across the Contiguous United States. Remote Sensing. 2024; 16(23):4476. https://doi.org/10.3390/rs16234476
Chicago/Turabian StyleChang, Jisung Geba, Simon Kraatz, Martha Anderson, and Feng Gao. 2024. "Enhanced Polarimetric Radar Vegetation Index and Integration with Optical Index for Biomass Estimation in Grazing Lands Across the Contiguous United States" Remote Sensing 16, no. 23: 4476. https://doi.org/10.3390/rs16234476
APA StyleChang, J. G., Kraatz, S., Anderson, M., & Gao, F. (2024). Enhanced Polarimetric Radar Vegetation Index and Integration with Optical Index for Biomass Estimation in Grazing Lands Across the Contiguous United States. Remote Sensing, 16(23), 4476. https://doi.org/10.3390/rs16234476