Reconstruction of Sea Surface Chlorophyll-a Concentration in the Bohai and Yellow Seas Using LSTM Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. OC-CCI Chl-a Product
2.2.2. Satellite Data of Environment Variables
2.3. Data Preprocessing
2.4. LSTM Model
3. Results
3.1. Contribution of the Environmental Variables to Chl-a Concentration Reconstruction
3.2. Overall Model Performance
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- Yang, G.; Ye, X.; Xu, Q.; Yin, X.; Xu, S. Sea surface chlorophyll-a concentration retrieval from hy-1c satellite data based on residual network. Remote Sens. 2023, 15, 3696. [Google Scholar] [CrossRef]
- Hammond, M.L.; Beaulieu, C.; Henson, S.A.; Sahu, S.K. Regional surface chlorophyll trends and uncertainties in the global ocean. Sci. Rep. 2020, 10, 15273. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Feng, L.; Guan, Q. A machine learning approach to estimate surface chlorophyll a concentrations in global oceans from satellite measurements. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4590–4607. [Google Scholar] [CrossRef]
- Ye, X.; Liu, J.; Lin, M.; Ding, J.; Zou, B.; Song, Q. Global ocean chlorophyll-a concentrations derived from COCTS onboard the HY-1C satellite and their preliminary evaluation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9914–9926. [Google Scholar] [CrossRef]
- Jayaram, C.; Pavan Kumar, J.; Udaya Bhaskar, T.; Bhavani, I.; Prasad Rao, T.; Nagamani, P. Reconstruction of gap-free OCM-2 chlorophyll-a concentration using DINEOF. J. Indian Soc. Remote Sens. 2021, 49, 1419–1425. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, J.; Ai, B.; Sun, S. Two-decade variability of sea surface temperature and chlorophyll-a in the northern South China Sea as revealed by reconstructed cloud-free satellite data. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9033–9046. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Liu, D. Multivariate DINEOF reconstruction for creating long-term cloud-free chlorophyll-a data records from SeaWiFS and MODIS: A case study in Bohai and Yellow Seas, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1383–1395. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D. Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: A case study in the Bohai and Yellow seas, China. Int. J. Remote Sens. 2014, 35, 204–217. [Google Scholar] [CrossRef]
- Barth, A.; Alvera-Azcárate, A.; Troupin, C.; Beckers, J.-M.; Van der Zande, D. Reconstruction of missing data in satellite images of the Southern North Sea using a convolutional neural network (DINCAE). In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 7493–7496. [Google Scholar]
- Chen, S.; Hu, C.; Barnes, B.B.; Xie, Y.; Lin, G.; Qiu, Z. Improving ocean color data coverage through machine learning. Remote Sens. Environ. 2019, 222, 286–302. [Google Scholar] [CrossRef]
- Han, Z.; He, Y.; Liu, G.; Perrie, W. Application of dincae to reconstruct the gaps in chlorophyll-a satellite observations in the south China sea and west Philippine sea. Remote Sens. 2020, 12, 480. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, X.; Bai, Y.; He, X.; Li, T.; Pan, D. Reconstruction of 3-D ocean chlorophyll a structure in the northern Indian ocean using satellite and BGC-argo data. IEEE Trans. Geosci. Remote Sens. 2022, 61, 4200513. [Google Scholar] [CrossRef]
- Krasnopolsky, V.; Nadiga, S.; Mehra, A.; Bayler, E.; Behringer, D. Neural networks technique for filling gaps in satellite measurements: Application to ocean color observations. Comput. Intell. Neurosci. 2016, 2016, 6156513. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.; Gorgues, T.; Lengaigne, M.; Fontana, C.; Sauzède, R.; Menkes, C.; Uitz, J.; Di Lorenzo, E.; Fablet, R. Reconstructing global chlorophyll-a variations using a non-linear statistical approach. Front. Mar. Sci. 2020, 7, 464. [Google Scholar]
- Park, J.; Kim, H.-C.; Bae, D.; Jo, Y.-H. Data reconstruction for remotely sensed chlorophyll-a concentration in the ross sea using ensemble-based machine learning. Remote Sens. 2020, 12, 1898. [Google Scholar] [CrossRef]
- Jouini, M.; Lévy, M.; Crépon, M.; Thiria, S. Reconstruction of satellite chlorophyll images under heavy cloud coverage using a neural classification method. Remote Sens. Environ. 2013, 131, 232–246. [Google Scholar] [CrossRef]
- Xing, M.; Yao, F.; Zhang, J.; Meng, X.; Jiang, L.; Bao, Y. Data reconstruction of daily MODIS chlorophyll-a concentration and spatio-temporal variations in the Northwestern Pacific. Sci. Total Environ. 2022, 843, 156981. [Google Scholar] [CrossRef]
- Luo, X.; Song, J.; Guo, J.; Fu, Y.; Wang, L.; Cai, Y. Reconstruction of chlorophyll-a satellite data in Bohai and Yellow Sea based on DINCAE method. Int. J. Remote Sens. 2022, 43, 3336–3358. [Google Scholar] [CrossRef]
- Roussillon, J.; Fablet, R.; Gorgues, T.; Drumetz, L.; Littaye, J.; Martinez, E. A Multi-Mode Convolutional Neural Network to reconstruct satellite-derived chlorophyll-a time series in the global ocean from physical drivers. Front. Mar. Sci. 2023, 10, 1077623. [Google Scholar] [CrossRef]
- Ye, H.; Yang, C.; Dong, Y.; Tang, S.; Chen, C. A daily reconstructed chlorophyll-a dataset in South China Sea from MODIS using OI-SwinUnet. Earth Syst. Sci. Data Discuss. 2024, 2023, 3125–3147. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, S.; Zhao, D.; Hu, C.; Xu, W.; Anderson, D.M.; Li, Y.; Song, X.-P.; Boyce, D.G.; Gibson, L. Coastal phytoplankton blooms expand and intensify in the 21st century. Nature 2023, 615, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Zhang, Y.; Cheng, Q.; Tsou, J.; Jiang, T.; San Liang, X. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 252–261. [Google Scholar] [CrossRef]
- Krug, L.A.; Platt, T.; Sathyendranath, S.; Barbosa, A.B. Unravelling region-specific environmental drivers of phytoplankton across a complex marine domain (off SW Iberia). Remote Sens. Environ. 2017, 203, 162–184. [Google Scholar] [CrossRef]
- Gupta, G.; Sudheesh, V.; Sudharma, K.; Saravanane, N.; Dhanya, V.; Dhanya, K.; Lakshmi, G.; Sudhakar, M.; Naqvi, S. Evolution to decay of upwelling and associated biogeochemistry over the southeastern Arabian Sea shelf. J. Geophys. Res. Biogeosciences 2016, 121, 159–175. [Google Scholar] [CrossRef]
- Jo, Y.-H.; Kim, D.-W.; Kim, H. Chlorophyll concentration derived from microwave remote sensing measurements using artificial neural network algorithm. J. Mar. Sci. Technol. 2018, 26, 10. [Google Scholar]
- Sathyendranath, S.; Jackson, T.; Grant, M.; Brewin, R.; Brotas, V.; Brockmann, C. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 5.0 Data; NERC EDS Centre for Environmental Data Analysis: Didcot, UK, 2021. [Google Scholar]
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer-Verlag: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983; 114p. [Google Scholar]
- Hu, C.; Lee, Z.; Franz, B. Chlorophyll aalgorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. J. Geophys. Res. Ocean. 2012, 117, C01011. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Geng, B.; Xiu, P.; Shu, C.; Zhang, W.Z.; Chai, F.; Li, S.; Wang, D. Evaluating the roles of wind-and buoyancy flux-induced mixing on phytoplankton dynamics in the northern and central South China Sea. J. Geophys. Res. Ocean. 2019, 124, 680–702. [Google Scholar] [CrossRef]
- Keerthi, M.G.; Prend, C.J.; Aumont, O.; Lévy, M. Annual variations in phytoplankton biomass driven by small-scale physical processes. Nat. Geosci. 2022, 15, 1027–1033. [Google Scholar] [CrossRef]
- Ma, W.; Xiu, P.; Chai, F.; Li, H. Seasonal variability of the carbon export in the central South China Sea. Ocean Dyn. 2019, 69, 955–966. [Google Scholar] [CrossRef]
- Boutin, J.; Reul, N.; Köhler, J.; Martin, A.; Catany, R.; Guimbard, S.; Rouffi, F.; Vergely, J.-L.; Arias, M.; Chakroun, M. Satellite-based sea surface salinity designed for ocean and climate studies. J. Geophys. Res. Ocean. 2021, 126, e2021JC017676. [Google Scholar] [CrossRef]
- Large, W.G.; Pond, S. Open Ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 1981, 11, 324–336. [Google Scholar] [CrossRef]
- Wu, J. Wind-stress coefficients over sea surface from breeze to hurricane. J. Geophys. Res. Ocean. 1982, 87, 9704–9706. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory; Neural Computation MIT-Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Ergen, T.; Kozat, S.S. Unsupervised anomaly detection with LSTM neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 3127–3141. [Google Scholar] [CrossRef]
- Hooker, S.B.; Lazin, G.; Zibordi, G.; McLean, S. An evaluation of above- and in-water methods for determining water-leaving radiances. J. Atmos. Ocean. Technol. 2002, 19, 486–515. [Google Scholar] [CrossRef]
- Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- AVISO/DUACS. SWOT Level-3 KaRIn Low Rate SSH Expert (v1.0). CNES. 2024. Available online: https://doi.org/10.24400/527896/A01-2023.018 (accessed on 16 November 2024).
Model ID | Input | R(log) | RMSE (mg/m3) | UPD (%) |
---|---|---|---|---|
LSTM_1 | Factor 1—2 | 0.84 | 1.36 | 37.45 |
LSTM_2 | Factor 1—3 | 0.93 | 1.04 | 23.62 |
LSTM_3 | Factor 1—4 | 0.94 | 1.00 | 21.44 |
LSTM_4 | Factor 1—5 | 0.95 | 0.96 | 20.26 |
LSTM_5 | Factor 1—6 | 0.95 | 0.95 | 19.76 |
LSTM_6 | Factor 1—7 | 0.96 | 0.91 | 18.47 |
LSTM_7 | Factor 1—8 | 0.96 | 0.91 | 18.19 |
LSTM_8 | Factor 1—9 | 0.96 | 0.91 | 18.14 |
LSTM_9 | Factor 1—10 | 0.96 | 0.89 | 17.59 |
LSTM_10 | Factor 1—11 | 0.96 | 0.89 | 17.25 |
LSTM_11 | Factor 1—12 | 0.97 | 0.88 | 17.24 |
Experiment ID | Time Window of Input Data | RMSE (mg/m3) | UPD (%) |
---|---|---|---|
1 | 1 day (t = 0) | 0.95 | 18.74 |
2 | 2 days (t = −1, 0) | 0.77 | 14.21 |
3 | 3 days (t = −2, −1, 0) | 0.63 | 11.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Yang, G.; Yin, X.; Sun, T. Reconstruction of Sea Surface Chlorophyll-a Concentration in the Bohai and Yellow Seas Using LSTM Neural Network. Remote Sens. 2025, 17, 174. https://doi.org/10.3390/rs17010174
Xu Q, Yang G, Yin X, Sun T. Reconstruction of Sea Surface Chlorophyll-a Concentration in the Bohai and Yellow Seas Using LSTM Neural Network. Remote Sensing. 2025; 17(1):174. https://doi.org/10.3390/rs17010174
Chicago/Turabian StyleXu, Qing, Guiying Yang, Xiaobin Yin, and Tong Sun. 2025. "Reconstruction of Sea Surface Chlorophyll-a Concentration in the Bohai and Yellow Seas Using LSTM Neural Network" Remote Sensing 17, no. 1: 174. https://doi.org/10.3390/rs17010174
APA StyleXu, Q., Yang, G., Yin, X., & Sun, T. (2025). Reconstruction of Sea Surface Chlorophyll-a Concentration in the Bohai and Yellow Seas Using LSTM Neural Network. Remote Sensing, 17(1), 174. https://doi.org/10.3390/rs17010174