Discovering Tree Architecture: A Comparison of the Performance of 3D Digitizing and Close-Range Photogrammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Fastrak Digitizer Data Collection
2.2.2. Photogrammetric Data Collection
2.3. Data Analysis
2.3.1. Fastrak Digitizer Tree Reconstruction
2.3.2. Photogrammetric Tree Reconstruction
2.3.3. Comparison of Both Methods
3. Results
3.1. Comparison of Tree Heights
3.2. Comparison of D03
3.3. Comparison of Tree Volume
3.4. The Detailed Volume of Each Branching Order Comparison
3.5. Comparison of the Length and the Number of Branches
3.6. Comparative Analysis of Structural Variability in 3D Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hauglin, M.; Rahlf, J.; Schumacher, J.; Astrup, R.; Breidenbach, J. Large Scale Mapping of Forest Attributes Using Heterogeneous Sets of Airborne Laser Scanning and National Forest Inventory Data. For. Ecosyst. 2021, 8, 65. [Google Scholar] [CrossRef]
- Monat, J.P. The Self-Awareness of the Forest. Futures 2024, 163, 103429. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth and Yield: From Measurement to Model; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9783540883067. [Google Scholar]
- Roth-Nebelsick, A.; Miranda, T.; Ebner, M.; Konrad, W.; Traiser, C. From Tree to Architecture: How Functional Morphology of Arborescence Connects Plant Biology, Evolution and Physics. Palaeobiodiversity Palaeoenvironments 2021, 101, 267–284. [Google Scholar] [CrossRef]
- Sinoquet, H.; Rivet, P. Measurement and Visualization of the Architecture of an Adult Tree on a Three-Dimensional Digitising Device. Trees 1997, 11, 265–270. [Google Scholar] [CrossRef]
- Sinoquet, H.; Rivet, P.; Godin, C. Assessment of the Three-Dimensional Architecture of Walnut Trees Using Digitising. Silva Fenn. 1997, 31, 5624. [Google Scholar] [CrossRef]
- Watanabe, T.; Hanan, J.S.; Room, P.M.; Hasegawa, T.; Nakagawa, H.; Takahashi, W. Rice Morphogenesis and Plant Architecture: Measurement, Specification and the Reconstruction of Structural Development by 3D Architectural Modelling. Ann. Bot. 2005, 95, 1131–1143. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, D.W.; Seymour, R.S. Crown Architecture of Abies Balsamea from Four Canopy Positions. Tree Physology 1997, 17, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Eliopoulos, N.J.; Shen, Y.; Nguyen, M.L.; Arora, V.; Zhang, Y.; Shao, G.; Woeste, K.; Lu, Y.H. Rapid Tree Diameter Computation with Terrestrial Stereoscopic Photogrammetry. J. For. 2020, 118, 355–361. [Google Scholar] [CrossRef]
- Cardillo, E.; Bernal, C.J. Morphological Response and Growth of Cork Oak (Quercus suber L.) Seedlings at Different Shade Levels. For. Ecol. Manag. 2006, 222, 296–301. [Google Scholar] [CrossRef]
- Fang, R.; Strimbu, B.M. Comparison of Mature Douglas-Firs’ Crown Structures Developed with Two Quantitative Structural Models Using TLS Point Clouds for Neighboring Trees in a Natural Regime Stand. Remote Sens. 2019, 11, 1661. [Google Scholar] [CrossRef]
- Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; et al. Rate of Tree Carbon Accumulation Increases Continuously with Tree Size. Nature 2014, 507, 90–93. [Google Scholar] [CrossRef]
- Noulèkoun, F.; Mensah, S.; Kim, H.S.; Jo, H.; Gouwakinnou, G.N.; Houéhanou, T.D.; Mensah, M.; Naab, J.; Son, Y.; Khamzina, A. Tree Size Diversity Is the Major Driver of Aboveground Carbon Storage in Dryland Agroforestry Parklands. Sci. Rep. 2023, 13, 22210. [Google Scholar] [CrossRef]
- Šleglová, K.; Brichta, J.; Bílek, L.; Surový, P. Measuring the Canopy Architecture of Young Vegetation Using the Fastrak Polhemus 3D Digitizer. Sensors 2024, 24, 109. [Google Scholar] [CrossRef]
- Jaiswal, A.; Nenonen, J.; Parkkonen, L. On Electromagnetic Head Digitization in MEG and EEG. Sci. Rep. 2023, 13, 3801. [Google Scholar] [CrossRef]
- Colchester, G. 3SPACE® FASTRAK® User Manual; OPM00PI002 REV. G; Polhemus Incorporated: Colchester, VT, USA, 2012. [Google Scholar]
- Miller, J.; Morgenroth, J.; Gomez, C. 3D Modelling of Individual Trees Using a Handheld Camera: Accuracy of Height, Diameter and Volume Estimates. Urban For. Urban Green. 2015, 14, 932–940. [Google Scholar] [CrossRef]
- Mokroš, M.; Výbošt’ok, J.; Tomaštík, J.; Grznárová, A.; Valent, P.; Slavík, M.; Merganič, J. High Precision Individual Tree Diameter and Perimeter Estimation from Close-Range Photogrammetry. Forests 2018, 9, 696. [Google Scholar] [CrossRef]
- Hrdina, M.; Surový, P. Internal Tree Trunk Decay Detection Using Close Range Remote Sensing Data and the PointNet Deep Learning Method. Remote. Sens. 2023, 15, 5712. [Google Scholar] [CrossRef]
- Yun, T.; Eichhorn, M.P.; Jin, S.; Yuan, X.; Fang, W.; Lu, X.; Wang, X.; Zhang, H. A Framework for Phenotyping Rubber Trees under Intense Wind Stress Using Laser Scanning and Digital Twin Technology. Agric. For. Meteorol. 2025, 361, 110319. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Zaforemska, A.; Gaulton, R.; Mills, J.; Xiao, W. Evaluation of Low-Cost Photogrammetric System for the Retrieval of 3D Tree Architecture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-1/W2-2023, 1097–1104. [Google Scholar] [CrossRef]
- Markku, Å.; Raumonen, P.; Kaasalainen, M.; Casella, E. Analysis of Geometric Primitives in Quantitative Structure Models of Tree Stems. Remote Sens. 2015, 7, 4581–4603. [Google Scholar] [CrossRef]
- Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds. Forests 2015, 6, 4245–4294. [Google Scholar] [CrossRef]
- Dong, Y.; Fan, G.; Zhou, Z.; Liu, J.; Wang, Y.; Chen, F. Low Cost Automatic Reconstruction of Tree Structure by Adqsm with Terrestrial Close-Range Photogrammetry. Forests 2021, 12, 1020. [Google Scholar] [CrossRef]
- Jiang, A.; Liu, J.; Zhou, J.; Zhang, M. Skeleton Extraction from Point Clouds of Trees with Complex Branches via Graph Contraction. Vis. Comput. 2021, 37, 2235–2251. [Google Scholar] [CrossRef]
- Surový, P.; Yoshimoto, A.; Panagiotidis, D. Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial Close-Range Photogrammetry. Remote Sens. 2016, 8, 123. [Google Scholar] [CrossRef]
- Apple Inc. IPhone 14 Pro—Technical Specifications, Cupertino, USA. 2022. Available online: https://support.apple.com/en-us/111849 (accessed on 1 December 2024).
- Frey, J.; Kovach, K.; Stemmler, S.; Koch, B. UAV Photogrammetry of Forests as a Vulnerable Process. A Sensitivity Analysis for a Structure from Motion RGB-Image Pipeline. Remote Sens. 2018, 10, 912. [Google Scholar] [CrossRef]
- Szedelyi, A. Lens Buddy (v60); iOS. Lens Buddy Selfie Timer Photo Video Filter Camera LLC. 2023. Available online: https://apps.apple.com/us/app/lens-buddy-self-timer-camera/id1289471945 (accessed on 1 December 2024).
- Agisoft LLC. Agisoft Metashape (v2.0.4); Software; Agisoft LLC.: St. Petersburg, Russia, 2023. [Google Scholar]
- CloudCompare. CloudCompare (v2.13.2); Télécom ParisTech and EDF R&D: Paris, France, 2023. [Google Scholar]
- Hackel, T.; Wegner, J.D.; Schindler, K. Contour Detection in Unstructured 3D Point Clouds. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1610–1618. [Google Scholar]
- Verzani, J. Getting Started with RStudio; O’Reilly Media, Inc.: Newton, MA, USA, 2011. [Google Scholar]
- Thomas, R.; Lello, J.; Medeiros, R.; Pollard, A.; Robinson, P.; Seward, A.; Smith, J.; Vafidis, J.; Vaughan, I. Data Analysis with R Statistical Software A Guidebook for Scientists; Eco-Explore: Newport, UK, 2017. [Google Scholar]
- Jafari, B.; Khaloo, A.; Lattanzi, D. Deformation Tracking in 3D Point Clouds Via Statistical Sampling of Direct Cloud-to-Cloud Distances. J. Nondestruct. Eval. 2017, 36, 65. [Google Scholar] [CrossRef]
- Anest, A.; Charles-Dominique, T.; Maurin, O.; Millan, M.; Edelin, C.; Tomlinson, K.W. Evolving the Structure: Climatic and Developmental Constraints on the Evolution of Plant Architecture. A Case Study in Euphorbia. New Phytol. 2021, 231, 1278–1295. [Google Scholar] [CrossRef] [PubMed]
- Mokro, M.; Liang, X.; Surový, P.; Valent, P.; Čerňava, J.; Chudý, F.; Tunák, D.; Saloň, I.; Merganič, J. Evaluation of Close-Range Photogrammetry Image Collection Methods for Estimating Tree Diameters. ISPRS Int. J. Geoinf. 2018, 7, 93. [Google Scholar] [CrossRef]
- Korpela, I. Individual Tree Measurements by Means of Digital Aerial Photogrammetry; Finnish Society of Forest Science: Helsinki, Finland, 2004; ISBN 9514019156. [Google Scholar]
- Zhu, R.; Guo, Z.; Zhang, X. Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching. Remote Sens. 2021, 13, 1633. [Google Scholar] [CrossRef]
- Raumonen, P. TreeQSM Quantitative Structure Models of Single Trees from Laser Scanner Data Instructions for MATLAB-Software TreeQSM, Version 2.4.0; Tampere University of Technology: Tampere, Finland, 2013. [Google Scholar]
- Liu, J.; Shen, X.; Hu, Y. Monocular Reconstruction of Non-Rigid Shapes Using Optical Flow Feedback. In Proceedings of the 2017 International Conference on Virtual Reality and Visualization (ICVRV), Zhengzhou, China, 21–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 24–29. [Google Scholar]
- Guo, Y.; Dai, Z.; Zhu, X. A Tracking and Mapping Method for Visually-Degraded Environment. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, XLVIII-4–2024, 633–638. [Google Scholar] [CrossRef]
- Morgenroth, J.; Gomez, C. Assessment of Tree Structure Using a 3D Image Analysis Technique—A Proof of Concept. Urban For. Urban Green. 2014, 13, 198–203. [Google Scholar] [CrossRef]
- Koeser, A.K.; Roberts, J.W.; Miesbauer, J.W.; Lopes, A.B.; Kling, G.J.; Lo, M.; Morgenroth, J. Testing the Accuracy of Imaging Software for Measuring Tree Root Volumes. Urban For. Urban Green. 2016, 18, 95–99. [Google Scholar] [CrossRef]
Deciduous Trees | Coniferous Trees | |||
---|---|---|---|---|
MAE | rRMSE [%] | MAE | rRMSE [%] | |
Height [m] | 0.48 | 34.19 | 0.49 | 37.19 |
D03 [cm] | 1.38 | 87.00 | 1.79 | 58.81 |
Length [m] | 21.56 | 123.47 | 32.79 | 102.27 |
Volume [dm3] | 11.58 | 73.91 | 20.07 | 115.39 |
Number of branches | 109.18 | 145.87 | 147.27 | 131.40 |
Parameter | Paired t-Test (p-Value) | Effect Size (Cohen’s d) | ||||
---|---|---|---|---|---|---|
All | Deciduous | Coniferous | All | Deciduous | Coniferous | |
D03 | 0.332 | 0.234 | 0.853 | 0.180 | 0.321 | 0.049 |
H max | 0.756 | 0.754 | 0.511 | −0.057 | 0.083 | −0.174 |
L branches | 0.395 | 0.043 | 0.494 | 0.158 | 0.574 | −0.181 |
L total | 0.741 | 0.369 | 0.003 | 0.065 | 0.539 | −0.234 |
L branch. 1st | 0.187 | 0.511 | 0.049 | −0.246 | 0.174 | −0.555 |
L branch. 2nd | 0.828 | 0.105 | 0.581 | 0.040 | 0.448 | −0.146 |
L branch. 3rd | 0.002 | 0.015 | 0.048 | 0.629 | 0.718 | 0.558 |
L branch. 4th | 0.652 | 0.032 | 0.386 | 0.083 | 0.616 | −0.231 |
L trunk | 0.028 | 0.369 | 0.003 | −1.090 | −0.527 | −11.369 |
N branch. 1st | 0.000 | 0.050 | 0.001 | −0.780 | −0.554 | −1.068 |
N branch. 2nd | 0.180 | 0.546 | 0.148 | −0.251 | 0.160 | −0.396 |
N branch. 3rd | 0.004 | 0.002 | 0.312 | 0.565 | 1.006 | 0.271 |
N branch. 4th | 0.000 | 0.007 | 0.004 | 0.771 | 0.817 | 0.877 |
N branch. total | 0.826 | 0.011 | 0.316 | 0.040 | 0.755 | −0.268 |
V branch. 1st | 0.018 | 0.030 | 0.270 | −0.458 | −0.622 | −0.296 |
V branch. 2nd | 0.103 | 0.846 | 0.106 | 0.308 | 0.051 | 0.446 |
V branch. 3rd | 0.004 | 0.075 | 0.025 | 0.566 | 0.496 | 0.649 |
V branch. 4th | 0.007 | 0.102 | 0.008 | 0.536 | 0.470 | 0.806 |
V branches | 0.423 | 0.307 | 0.278 | 0.148 | −0.273 | 0.291 |
V total | 0.448 | 0.021 | 0.956 | −0.141 | −0.671 | 0.015 |
Deciduous Trees | Coniferous Trees | |||
---|---|---|---|---|
CRP | Fastrak | CRP | Fastrak | |
Mean height | 1.84 | 1.79 | 1.85 | 2.08 |
Standard deviation | 0.63 | 0.51 | 0.71 | 0.69 |
Minimum height | 0.82 | 0.80 | 0.83 | 1.12 |
Maximum height | 2.75 | 2.59 | 3.26 | 3.61 |
Deciduous Trees | Coniferous Trees | |||
---|---|---|---|---|
CRP | Fastrak | CRP | Fastrak | |
Mean D03 | 3.59 | 2.82 | 4.48 | 4.35 |
Standard deviation | 2.44 | 1.29 | 2.28 | 2.38 |
Minimum D03 | 0.76 | 1.00 | 1.59 | 2.00 |
Maximum D03 | 9.06 | 5.50 | 8.27 | 12.00 |
Deciduous | ||||
---|---|---|---|---|
No. | Maximal Distance | Average Distance | Standard Deviation | Maximal Error |
1 | 36.32 | 3.02 | 3.67 | 0.84 |
2 | 22.10 | 1.43 | 2.25 | 0.82 |
3 | 28.46 | 3.03 | 3.34 | 0.83 |
4 | 16.10 | 2.58 | 1.99 | 0.93 |
5 | 78.40 | 21.26 | 15.13 | 0.76 |
6 | 59.63 | 11.62 | 12.12 | 0.89 |
7 | 79.86 | 11.98 | 12.56 | 0.85 |
8 | 13.41 | 2.09 | 1.44 | 0.73 |
9 | 22.30 | 4.93 | 3.78 | 0.43 |
10 | 1.54 | 1.51 | 1.61 | 0.27 |
11 | 14.07 | 2.20 | 2.21 | 0.42 |
12 | 14.24 | 1.79 | 1.64 | 0.62 |
13 | 32.98 | 5.36 | 4.79 | 0.45 |
14 | 35.96 | 6.45 | 5.40 | 0.69 |
15 | 28.95 | 4.99 | 3.94 | 0.94 |
Coniferous | ||||
---|---|---|---|---|
No. | Maximal Distance | Average Distance | Standard Deviation | Maximal Error |
1 | 28.35 | 5.30 | 3.82 | 0.85 |
2 | 16.26 | 3.68 | 2.59 | 1.06 |
3 | 32.20 | 6.77 | 4.23 | 0.89 |
4 | 13.29 | 2.58 | 1.73 | 0.65 |
5 | 49.51 | 10.44 | 6.82 | 0.90 |
6 | 55.68 | 12.88 | 9.56 | 0.69 |
7 | 115.23 | 25.23 | 22.55 | 1.10 |
8 | 59.66 | 10.21 | 9.42 | 0.99 |
9 | 14.71 | 3.87 | 2.66 | 0.32 |
10 | 21.36 | 5.23 | 3.40 | 0.62 |
11 | 60.67 | 19.03 | 12.15 | 0.59 |
12 | 46.59 | 10.21 | 7.43 | 0.92 |
13 | 42.92 | 8.23 | 7.2 | 0.58 |
14 | 38.36 | 7.47 | 6.11 | 0.38 |
15 | 34.60 | 6.99 | 6.15 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šleglová, K.; Hrdina, M.; Surový, P. Discovering Tree Architecture: A Comparison of the Performance of 3D Digitizing and Close-Range Photogrammetry. Remote Sens. 2025, 17, 202. https://doi.org/10.3390/rs17020202
Šleglová K, Hrdina M, Surový P. Discovering Tree Architecture: A Comparison of the Performance of 3D Digitizing and Close-Range Photogrammetry. Remote Sensing. 2025; 17(2):202. https://doi.org/10.3390/rs17020202
Chicago/Turabian StyleŠleglová, Kristýna, Marek Hrdina, and Peter Surový. 2025. "Discovering Tree Architecture: A Comparison of the Performance of 3D Digitizing and Close-Range Photogrammetry" Remote Sensing 17, no. 2: 202. https://doi.org/10.3390/rs17020202
APA StyleŠleglová, K., Hrdina, M., & Surový, P. (2025). Discovering Tree Architecture: A Comparison of the Performance of 3D Digitizing and Close-Range Photogrammetry. Remote Sensing, 17(2), 202. https://doi.org/10.3390/rs17020202