Characterizing Groundwater Level Response to Precipitation at Multiple Timescales in the Lubei Plain Region Using Transfer Function Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Climate
2.1.2. Hydrogeological Condition
2.1.3. Water Resources
2.2. Dataset
2.2.1. Precipitation Datasets
2.2.2. Groundwater Level
2.3. Method
2.3.1. Semivariogram Function
2.3.2. Transfer Function Analysis (TFA)
2.3.3. Apportionment Entropy (AE) Seasonality Index
2.3.4. Moran’s Index
3. Results
3.1. Spatiotemporal Characteristics of Precipitation and Shallow Groundwater Level
3.1.1. Spatiotemporal Characteristics of Precipitation in the LBP
3.1.2. Characteristics of Spatiotemporal Variability of Shallow Groundwater Level
3.2. Spatiotemporal Characteristics of Precipitation–GWL Response
3.2.1. Spatial Variability of the Precipitation–Groundwater Level Response in the LBP
3.2.2. Multi-Timescale Response of Groundwater Level to Precipitation
4. Discussion
4.1. Seasonal Fluctuations in the Shallow Groundwater Level
4.2. Seasonal Characteristics of Precipitation–GWL Response Affected by Irrigation Exploitation
4.3. Limitations and Constraints
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, L.; Guo, Y.; Tang, W.; Xu, W.; Fan, Z. Statistical Evaluation of the Influences of Precipitation and River Level Fluctuations on Groundwater in Yoshino River Basin, Japan. Water 2022, 14, 625. [Google Scholar] [CrossRef]
- Nannawo, A.S.; Lohani, T.K.; Eshete, A.A. Groundwater recharge evaluation due to climate change using WetSpass-M distributed hydrological model in Bilate river basin of Ethiopia. Groundw. Sustain. Dev. 2022, 19, 100860. [Google Scholar] [CrossRef]
- Tashie, A.M.; Mirus, B.B.; Pavelsky, T.M. Identifying long-term empirical relationships between storm characteristics and episodic groundwater recharge. Water Resour. Res. 2016, 52, 21–35. [Google Scholar] [CrossRef]
- Wittenberg, H.; Aksoy, H.; Miegel, K. Fast response of groundwater to heavy rainfall. J. Hydrol. 2019, 571, 837–842. [Google Scholar] [CrossRef]
- Gunduz, O.; Simsek, C. Influence of Climate Change on Shallow Groundwater Resources: The Link Between Precipitation and Groundwater Levels in Alluvial Systems. In Climate Change and Its Effects on Water Resources; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2011; pp. 225–233. [Google Scholar]
- Wang, D.; Li, P.; He, X.; He, S. Exploring the response of shallow groundwater to precipitation in the northern piedmont of the Qinling Mountains, China. Urban Clim. 2023, 47, 101379. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The changing nature of groundwater in the global water cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef]
- Band, S.S.; Heggy, E.; Bateni, S.M.; Karami, H.; Rabiee, M.; Samadianfard, S.; Chau, K.-W.; Mosavi, A. Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1147–1158. [Google Scholar] [CrossRef]
- Hellwig, J.; Stahl, K. An assessment of trends and potential future changes in groundwater-baseflow drought based on catchment response times. Hydrol. Earth Syst. Sci. 2018, 22, 6209–6224. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Collenteur, R.A.; Jasechko, S.; Jaramillo, F.; Luijendijk, E.; Moeck, C.; van der Velde, Y.; Allen, S.T. Groundwater recharge is sensitive to changing long-term aridity. Nat. Clim. Chang. 2024, 14, 357–363. [Google Scholar] [CrossRef]
- Thomas, B.; Behrangi, A.; Famiglietti, J. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States. Water 2016, 8, 90. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Garcia, C.; Morán-Tejeda, E. Groundwater level responses to precipitation variability in Mediterranean insular aquifers. J. Hydrol. 2017, 552, 516–531. [Google Scholar] [CrossRef]
- Dangar, S.; Mishra, V. Excessive pumping limits the benefits of a strengthening summer monsoon for groundwater recovery in India. One Earth 2023, 6, 419–427. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, T.; Wu, P. Anthropogenic amplification of precipitation variability over the past century. Science 2024, 385, 427–432. [Google Scholar] [CrossRef]
- Pang, M.; Du, E.; Zheng, C. A data-driven approach to exploring the causal relationships between distributed pumping activities and aquifer drawdown. Sci. Total Environ. 2023, 870, 161998. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, Q.; Yeh, P.J.-F.; Pan, Y.; Gong, H.; Moradkhani, H.; Gong, W.; Lei, X.; Liao, W.; Xu, L.; et al. Sub-regional groundwater storage recovery in North China Plain after the South-to-North water diversion project. J. Hydrol. 2021, 597, 126156. [Google Scholar] [CrossRef]
- Yang, G.; McCoy, K. Modeling groundwater-level responses to multiple stresses using transfer-function models and wavelet analysis in a coastal aquifer system. J. Hydrol. 2023, 627, 130426. [Google Scholar] [CrossRef]
- Zhu, R.; Zheng, H.; Jakeman, A.J.; Chiew, F.H.S. Multi-timescale Performance of Groundwater Drought in Connection with Climate. Water Resour. Manag. 2023, 37, 3599–3614. [Google Scholar] [CrossRef]
- Gong, R.; Chen, J.; Liang, Z.; Wu, C.; Tian, D.; Wu, J.; Li, S.; Zeng, G. Characterization and propagation from meteorological to groundwater drought in different aquifers with multiple timescales. J. Hydrol. Reg. Stud. 2023, 45, 101317. [Google Scholar] [CrossRef]
- Barlage, M.; Chen, F.; Rasmussen, R.; Zhang, Z.; Miguez-Macho, G. The Importance of Scale-Dependent Groundwater Processes in Land-Atmosphere Interactions Over the Central United States. Geophys. Res. Lett. 2021, 48, e2020GL092171. [Google Scholar] [CrossRef]
- Li, H.; Wang, F.; Liu, Y.; Zhao, H.; Bao, S.; Chang, K.; Ye, X. Analysis on dynamic response of shallow groundwater level under climate change scenario in the plain area of Taoer River Basin. J. Beijing Norm. Univ. (Nat. Sci.) 2021, 57, 345–352. [Google Scholar]
- Rym, H.; Issam, N.; Jamila, T. Assessment of climate change impact on the Zeuss–Koutine aquifer (Tunisia) using a WEAP-MODFLOW DSS. Arab. J. Geosci. 2022, 15, 757. [Google Scholar] [CrossRef]
- Gumuła-Kawęcka, A.; Jaworska-Szulc, B.; Szymkiewicz, A.; Gorczewska-Langner, W.; Angulo-Jaramillo, R.; Šimůnek, J. Impact of climate change on groundwater recharge in shallow young glacial aquifers in northern Poland. Sci. Total Environ. 2023, 877, 162904. [Google Scholar] [CrossRef] [PubMed]
- Asoka, A.; Wada, Y.; Fishman, R.; Mishra, V. Strong Linkage Between Precipitation Intensity and Monsoon Season Groundwater Recharge in India. Geophys. Res. Lett. 2018, 45, 5536–5544. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, J.; Shu, L.; Yuan, Y.; Zhang, F.; Lu, C. Response of groundwater level to precipitation and river level changes in typical areas of Sanjiang Plain. South-North Water Transf. Water Sci. Technol. 2022, 20, 1076–1083+1127. [Google Scholar] [CrossRef]
- Wang, R.; Xiong, L.; Xu, X.; Liu, S.; Feng, Z.; Wang, S.; Huang, Q.; Huang, G. Long-term responses of the water cycle to climate variability and human activities in a large arid irrigation district with shallow groundwater: Insights from agro-hydrological modeling. J. Hydrol. 2023, 626, 130264. [Google Scholar] [CrossRef]
- Tweed, S.; Celle-Jeanton, H.; Cabot, L.; Huneau, F.; De Montety, V.; Nicolau, N.; Travi, Y.; Babic, M.; Aquilina, L.; Vergnaud-Ayraud, V.; et al. Impact of irrigated agriculture on groundwater resources in a temperate humid region. Sci. Total Environ. 2018, 613–614, 1302–1316. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; Mainuddin, M.; Ahmad, M.D.; Hodgson, G.; Ibn Murad, K.F.; Ticehurst, C.; Maniruzzaman, M.; Golam Mahboob, M.; Kirby, J.M. Groundwater use and rapid irrigation expansion in a changing climate: Hydrological drivers in one of the world’s food bowls. J. Hydrol. 2020, 581, 124300. [Google Scholar] [CrossRef]
- Wang, C.; Dai, F.; Liu, Y.; Wang, Y.; Li, H.; Qu, W. Shallow Groundwater Responses to Rainfall Based on Correlation and Spectral Analyses in the Heilonggang Region, China. Water 2023, 15, 1100. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, L.; Menenti, M.; van Hoek, M.; Lu, J.; Zheng, C.; Wu, H.; Yuan, X. Characterizing vegetation response to rainfall at multiple temporal scales in the Sahel-Sudano-Guinean region using transfer function analysis. Remote Sens. Environ. 2021, 252, 112108. [Google Scholar] [CrossRef]
- Cui, Y.; Wei, Y.; Xu, X.; Liao, Z.; Liu, J. Groundwater level dynamics and its response to precipitation changes based on the standard groundwater index. Sci. Technol. Eng. 2020, 20, 6336–6342. [Google Scholar]
- Alfio, M.R.; Pisinaras, V.; Panagopoulos, A.; Balacco, G. Groundwater level response to precipitation at the hydrological observatory of Pinios (central Greece). Groundw. Sustain. Dev. 2024, 24, 101081. [Google Scholar] [CrossRef]
- Aon, S.; Nandi, S.; Sen, S.; Biswas, S. GRACE based groundwater drought evaluation of Ganga Basin and analysis of drought propagation using wavelet based quantitative approach. Sci. Total Environ. 2024, 951, 175666. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Sun, H.; Zhang, Y.; Zhang, S.; Lu, C. Partial Wavelet Coherence to Evaluate Scale-dependent Relationships Between Precipitation/Surface Water and Groundwater Levels in a Groundwater System. Water Resour. Manag. 2022, 36, 2509–2522. [Google Scholar] [CrossRef]
- Chen, B.; Jin, P.; Liu, S.; Dong, S. Spectral characteristics and transfer functions of hydrological process lines in deep water-bearing systems. Acta Geol. Sin. 1993, 67, 168–177. [Google Scholar] [CrossRef]
- Yang, L.; Wang, X.; Liu, C. Study on the relationship between geological environment degradation and groundwater exploitation in the lower reaches of the Yellow River. Northwestern Geol. 2015, 48, 226–233. [Google Scholar]
- Yang, L.; Liu, C.; Liu, Z. Identification of the threshold of land subsidence caused by deep groundwater extraction in Texas. J. Water Resour. Water Eng. 2010, 21, 55–60. [Google Scholar]
- Liu, Y.; Li, P.; Feng, A.; Huang, H. Dynamic changes of groundwater in the Yellow River Delta and its relationship with land subsidence. J. Earth Sci. 2014, 39, 1655–1665. [Google Scholar]
- Liu, C.; Zhang, G.; Yang, L.; Wei, Z.; Liu, Z. Study on the characteristics of human activities’ impact on groundwater environment in the northern Shandong plain. Editor. Dep. J. Water Resour. Water Eng. 2012, 23, 1–5. [Google Scholar]
- Jia, C.; Zhang, S.; Sun, X.; Di, S.; Ding, P. Correlation between groundwater exploitation and land subsidence in the northwest plain of Shandong Province. China Sci. 2021, 16, 173–180. [Google Scholar]
- Hao, R.; Wang, X.-W.; Xu, Y.-S. Analysis of the factors resulting in the acceleration of land subsidence in the central area of Dezhou city, China. Environ. Earth Sci. 2022, 81, 400. [Google Scholar] [CrossRef]
- Ying, Z.; Weitao, H. Study on the Status of Seawater Intrusion and Soil Salinization and theEcological Restoration Measures: Taking the Northern Region of Weifang as Example. Coast. Eng. 2024, 43, 142–153. [Google Scholar]
- Di, S.; Jia, C.; Zhang, S.; Ding, P.; Shao, M.; Zhang, Y. Regional characteristics and evolution trend prediction of land subsidence caused by groundwater overexploitation in the northern part of Shandong Province, North China Plain. Acta Geol. Sin. 2020, 94, 1638–1654. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Shao, J.; Zhang, Q. Study on Optimal Allocation of Water Resources Based on Surrogate Model of Groundwater Numerical Simulation. Water 2019, 11, 831. [Google Scholar] [CrossRef]
- Wang, K.; Chen, H.; Fu, S.; Li, F.; Wu, Z.; Xu, D. Analysis of exploitation control in typical groundwater over-exploited area in North China Plain. Hydrol. Sci. J. 2021, 66, 851–861. [Google Scholar] [CrossRef]
- Wang, H.; Gong, H.; Chen, B.; Zhou, C.; Yang, Y.; Sun, X. Research on land subsidence-rebound affected by dualistic water cycle driven by climate change and human activities in Dezhou City, China. J. Hydrol. 2024, 636, 131327. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Ding, P.; Sha, F.; Feng, K.; Wei, M. A preliminary study on the construction and structural rationality of the deep sandstone thermal reservoir subsidence monitoring stratified benchmark: A case study of the deep sandstone thermal reservoir subsidence monitoring stratified benchmark in the northern plain of Shandong. Shandong Land Resour. 2022, 38, 53–58. [Google Scholar]
- Wang, W.; Zhu, Z.; Qu, S.; Qiu, N. Discussion on the impact of Yellow River irrigation on regional water cycle in Shandong Province. J. Irrig. Drain. 2012, 31, 111–113. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, G.; Liu, Z.; Liu, C. Evaluation of Isotopic Age and Renewability of Groundwater in the Northern Plain of Shandong. Acta Geosci. Sin. 2009, 30, 235–242. [Google Scholar]
- Shandong Water Resources Bulletin. 2000–2020. Available online: http://wr.shandong.gov.cn/zwgk_319/fdzdgknr/tjsj/szygb/ (accessed on 19 September 2023).
- Delgado, D.; Sadaoui, M.; Ludwig, W.; Méndez, W. Spatio-temporal assessment of rainfall erosivity in Ecuador based on RUSLE using satellite-based high frequency GPM-IMERG precipitation data. Catena 2022, 219, 106597. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Lu, C.; Song, Z.; Wang, W.; Zhang, Y.; Si, H.; Liu, B.; Shu, L. Spatiotemporal variation and long-range correlation of groundwater depth in the Northeast China Plain and North China Plain from 2000~2019. J. Hydrol. Reg. Stud. 2021, 37, 100888. [Google Scholar] [CrossRef]
- Bilonick, R.A. An Introduction to Applied Geostatistics; Taylor & Francis Group: Abingdon, UK, 1991. [Google Scholar]
- Wallace, C.S.A.; Watts, J.M.; Yool, S.R. Characterizing the spatial structure of vegetation communities in the Mojave Desert using geostatistical techniques. Comput. Geosci. 2000, 26, 397–410. [Google Scholar] [CrossRef]
- Colin, J.; Decharme, B.; Cattiaux, J.; Saint-Martin, D. Groundwater Feedbacks on Climate Change in the CNRM Global Climate Model. J. Clim. 2023, 36, 7599–7617. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Klaar, M.; Chen, A.; Gudmundsson, L.; Holden, J. Anthropogenic climate change has influenced global river flow seasonality. Science 2024, 383, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhou, M.; Li, Y.; Ye, X.; Yang, M.; Wang, Y. Flow Spatiotemporal Moran’s I: Measuring the Spatiotemporal Autocorrelation of Flow Data. Geogr. Anal. 2024, 56, 799–824. [Google Scholar] [CrossRef]
- Shamsudduha, M.; Chandler, R.E.; Taylor, R.G.; Ahmed, K.M. Recent trends in groundwater levels in a highly seasonal hydrological system: The Ganges-Brahmaputra-Meghna Delta. Hydrol. Earth Syst. Sci. 2009, 13, 2373–2385. [Google Scholar] [CrossRef]
- Wossenyeleh, B.K.; Verbeiren, B.; Diels, J.; Huysmans, M. Vadose Zone Lag Time Effect on Groundwater Drought in a Temperate Climate. Water 2020, 12, 2123. [Google Scholar] [CrossRef]
- Zhong, X.; Gong, H.; Chen, B.; Zhou, C.; Xu, M. Study on the evolution of shallow groundwater levels and its spatiotemporal response to precipitation in the Beijing Plain of China based on variation points. Ecol. Indic. 2024, 166, 112466. [Google Scholar] [CrossRef]
- Lan, Q.; Dong, J.; Lai, S.; Wang, N.; Zhang, L.; Liao, M. Flood Inundation Extraction and its Impact on Ground Subsidence Using Sentinel-1 Data: A Case Study of the “7.20” Rainstorm Event in Henan Province, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 2927–2938. [Google Scholar] [CrossRef]
- Cao, G.; Zheng, C.; Scanlon, B.R.; Liu, J.; Li, W. Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resour. Res. 2013, 49, 159–175. [Google Scholar] [CrossRef]
- Yan, M.; Wang, J.; Li, D.; Zhang, G. Effects of agricultural irrigation water diversion and exploitation on groundwater level under the condition of annual precipitation changes. Hydrogeol. Eng. Geol. 2010, 37, 27–30. [Google Scholar] [CrossRef]
- Wen, Y.; Wan, H.; Shang, S.; Rahman, K.U. A monthly distributed agro-hydrological model for irrigation district in arid region with shallow groundwater table. J. Hydrol. 2022, 609, 127746. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Z.; Fei, Y.; Lian, Y.; Yan, M.; Wang, J. Study on regional water resources characteristics and crop layout structure adaptability in the North China Plain. Acta Geosci. Sin. 2010, 31, 17–22. [Google Scholar]
- Wang, N.; Gao, P.; Zhao, L.; Liu, X.; Ma, Y.; Liu, X. Analysis on temporal and spatial variation of groundwater depth and exploitation suitability in typical Yellow River diversion areas in northern Shandong Plain. Water Sav. Lrrigation 2016, 6, 69–74. [Google Scholar]
Well ID | Location | Monitoring Layer | Time Range |
---|---|---|---|
Well-01 | Lingcheng, Dezhou City | Shallow | Jan. 2000–Dec. 2020 |
Well-02 | Decheng, Dezhou City | ||
Well-03 | Decheng, Dezhou City | ||
Well-04 | Decheng, Dezhou City | ||
Well-05 | Lingcheng, Dezhou City | ||
Well-06 | Wucheng, Dezhou City | ||
Well-07 | Xiajin, Dezhou City | ||
Well-08 | Guangrao, Dongying City | Shallow | Jan. 2000–Dec. 2020 |
Well-09 | Guangrao, Dongying City | ||
Well-10 | Guangrao, Dongying City | ||
Well-11 | Guangrao, Dongying City | ||
Well-12 | Guangrao, Dongying City | ||
Well-13 | Kenli, Dongying City |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Gong, H.; Chen, B.; Zhou, C.; Zhong, X.; Ma, Z.; Meng, D. Characterizing Groundwater Level Response to Precipitation at Multiple Timescales in the Lubei Plain Region Using Transfer Function Analysis. Remote Sens. 2025, 17, 208. https://doi.org/10.3390/rs17020208
Xu L, Gong H, Chen B, Zhou C, Zhong X, Ma Z, Meng D. Characterizing Groundwater Level Response to Precipitation at Multiple Timescales in the Lubei Plain Region Using Transfer Function Analysis. Remote Sensing. 2025; 17(2):208. https://doi.org/10.3390/rs17020208
Chicago/Turabian StyleXu, Lewei, Huili Gong, Beibei Chen, Chaofan Zhou, Xueting Zhong, Ziyao Ma, and Dexin Meng. 2025. "Characterizing Groundwater Level Response to Precipitation at Multiple Timescales in the Lubei Plain Region Using Transfer Function Analysis" Remote Sensing 17, no. 2: 208. https://doi.org/10.3390/rs17020208
APA StyleXu, L., Gong, H., Chen, B., Zhou, C., Zhong, X., Ma, Z., & Meng, D. (2025). Characterizing Groundwater Level Response to Precipitation at Multiple Timescales in the Lubei Plain Region Using Transfer Function Analysis. Remote Sensing, 17(2), 208. https://doi.org/10.3390/rs17020208