Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Atmospheric Chemical Potential (ACP) Calculation
2.3.2. Climatological Analysis for Seismic Precursor Identification (CAPRI)
2.3.3. Statistical Analysis
3. Results
3.1. Vertical Distribution of ACP
3.2. Temporal Evolution of ACP Anomalies
3.3. Spatial Characteristics of ACP Anomalies
4. Discussion
5. Conclusions
- The ACPs at altitudes between 100 m and 1000 m show significant similarities, whereas at 2000 m they show slight fluctuations compared to other altitudes. Below 5000 m, the ACPs show a decreasing trend with altitude, while between 5000 and 10,000 m, they exhibit greater variability than at lower altitudes. Notably, at 20,000 m, the ACP remains almost unaffected by surface factors and stays in a stable variate state. To minimize the impact of anthropogenic activities on ACP, data at an altitude of 200 m are recommended for analyzing the Sichuan–Qinghai region;
- In the five studied EQs, a consistent temporal pattern was observed: for each EQ, anomalies appeared two months prior, primarily concentrated 14 to 30 days before the event, with a few anomalies occurring afterward;
- Spatially, the anomalies exhibited weaker variations in the epicentral region and more persistent changes in the surrounding areas, aligning closely with fault zone distributions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Freund, F.; Ouillon, G.; Scoville, J.; Sornette, D. Earthquake precursors in the light of peroxy defects theory: Critical review of systematic observations. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, S.; Sun, Z.; Guo, H.; Zhang, L.; Feng, K. Advances of satellite remote sensing technology in earthquake prediction. Nat. Hazards Rev. 2021, 22, 03120001. [Google Scholar] [CrossRef]
- Chen, Y. Earthquake prediction: Retrospect and prospect. Sci. China Earth Sci. 2009, 3912, 1633–1658. [Google Scholar]
- Paudel, S.R.; Banjara, S.P.; Wagle, A.; Freund, F.T. Earthquake chemical precursors in groundwater: A review. J. Seismol. 2018, 22, 1293–1314. [Google Scholar] [CrossRef]
- Varotsos, P.; Lazaridou, M. Latest aspects of earthquake prediction in Greece based on seismic electric signals. Tectonophysics 1991, 188, 321–347. [Google Scholar] [CrossRef]
- Uyeda, S.; Kamogawa, M. The prediction of two large earthquakes in Greece. Eos Trans. AGU 2008, 89, 363. [Google Scholar] [CrossRef]
- Orihara, Y.; Kamogawa, M.; Nagao, T.; Uyeda, S. Preseismic anomalous telluric current signals observed in Kozu-shima Island, Japan. Proc. Natl. Acad. Sci. USA 2012, 109, 19125–19128. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Identifying the occurrence time of an impending major earthquake: A review. Earthq. Sci. 2017, 30, 209–218. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Varotsos, P.A.; Skordas, E.S.; Uyeda, S.; Zlotnicki, J.; Nagao, T.; Rybin, A.; Lazaridou-Varotsos, M.S.; Papadopoulou, K.A. Seismic electric signals in seismic prone areas. Earthq. Sci. 2018, 31, 44–51. [Google Scholar] [CrossRef]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Shahrisvand, M.; Akhoondzadeh, M.; Sharifi, M.A. Detection of gravity changes before powerful earthquakes in GRACE satellite observations. Ann. Geophys. 2014, 57, A0543. [Google Scholar] [CrossRef]
- Chen, H.; Jin, Y. Monitor the microwave thermal emission anomaly around the Yushu earthquake fault zone by using AMSR-E data. In Proceedings of the Remote Sensing of the Environment: The 17th China Conference on Remote Sensing, Hangzhou, China, 27–31 August 2010; SPIE: Bellingham, WA, USA, 2011; Volume 8203, pp. 184–190. [Google Scholar]
- Zhang, Y.; Guo, X.; Zhong, M.; Shen, W.; Li, W.; He, B. Wenchuan earthquake: Brightness temperature changes from satellite infrared information. Chin. Sci. Bull. 2010, 55, 1917–1924. [Google Scholar] [CrossRef]
- Singh, R.P.; Mehdi, W.; Gautam, R.; Senthil Kumar, J.; Zlotnicki, J.; Kafatos, M. Precursory signals using satellite and ground data associated with the Wenchuan Earthquake of 12 May 2008. Int. J. Remote Sens. 2010, 31, 3341–3354. [Google Scholar] [CrossRef]
- Jing, F.; Gu, X.; Shen, X. Study on outgoing longwave radiation variations associated with strong earthquake. In Proceedings of the International Conference on Space Information Technology 2009, Beijing, China, 26–27 November 2009; SPIE: Bellingham, WA, USA, 2010; Volume 7651, pp. 275–280. [Google Scholar]
- Yang, G.; Mi, Y. Thermal anomalies and earthquakes: Evidence from Wenchuan, China. Earthq. Res. China 2009, 23, 48–55. [Google Scholar]
- Kong, X.; Li, N.; Lin, L.; Xiong, P.; Qi, J. Relationship of stress changes and anomalies in OLR data of the Wenchuan and Lushan earthquakes. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2966–2976. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, J.; Wang, W.; Ren, H.; Chen, L.; Yan, G. A preliminary evaluation of surface latent heat flux as an earthquake precursor. Nat. Hazards Earth Syst. Sci. 2013, 13, 2639–2647. [Google Scholar] [CrossRef]
- Cui, J.; Shen, X.; Zhang, J.; Ma, W.; Chu, W. Analysis of spatiotemporal variations in middle-tropospheric to upper-tropospheric methane during the Wenchuan Ms = 8.0 earthquake by three indices. Nat. Hazards Earth Syst. Sci. 2019, 19, 2841–2854. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Ant Colony Optimization detects anomalous aerosol variations associated with the Chile earthquake of 27 February 2010. Adv. Space Res. 2015, 55, 1754–1763. [Google Scholar] [CrossRef]
- Sekertekin, A.; Inyurt, S.; Yaprak, S. Pre-seismic ionospheric anomalies and spatio-temporal analyses of MODIS Land surface temperature and aerosols associated with 24 September 2013 Pakistan Earthquake. J. Atmos.-Sol.-Terr. Phys. 2020, 200, 105218. [Google Scholar] [CrossRef]
- Shi, K.; Liu, X.; Guo, J.; Liu, L.; You, X.; Wang, F. Pre-earthquake and coseismic ionosphere disturbances of the Mw 6.6 Lushan earthquake on 20 April 2013 monitored by CMONOC. Atmosphere 2019, 10, 216. [Google Scholar] [CrossRef]
- Ulukavak, M.; Yalçınkaya, M.; Kayıkçı, E.T.; Öztürk, S.; Kandemir, R.; Karslı, H. Analysis of ionospheric TEC anomalies for global earthquakes during 2000–2019 with respect to earthquake magnitude (Mw ≥ 6.0). J. Geodyn. 2020, 135, 101721. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X.; Ouyang, X.; Liu, J.; Qian, G.; Li, T.; Shen, X. Polarization Method-Based Research on Magnetic Field Data Associated with Earthquakes in Northeast Asia Recorded by the China Seismo-Electromagnetic Satellite. Atmosphere 2023, 14, 1555. [Google Scholar] [CrossRef]
- Lin, J.T.; Melgar, D.; Thomas, A.M.; Searcy, J. Early warning for great earthquakes from characterization of crustal deformation patterns with deep learning. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022703. [Google Scholar] [CrossRef]
- He, M.; Wu, L.; Cui, J.; Wang, W.; Qi, Y.; Mao, W.; Miao, Z.; Chen, B.; Shen, X. Remote sensing anomalies of multiple geospheres before the Wenchuan earthquake and its spatiotemporal correlations. J. Remote Sens. 2020, 24, 681–700. [Google Scholar] [CrossRef]
- Wei, C.; Zhang, Y.; Guo, X.; Hui, S.; Qin, M.; Zhang, Y. Thermal infrared anomalies of several strong earthquakes. Sci. World J. 2013, 2013, 208407. [Google Scholar] [CrossRef]
- Jing, F.; Zhang, L.; Singh, R.P. Pronounced changes in thermal signals associated with the Madoi (China) M 7.3 earthquake from passive microwave and infrared satellite data. Remote Sens. 2022, 14, 2539. [Google Scholar] [CrossRef]
- Jing, F.; Singh, R.P.; Cui, Y.; Sun, K. Microwave brightness temperature characteristics of three strong earthquakes in Sichuan Province, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 513–522. [Google Scholar] [CrossRef]
- Ye, Q.; Singh, R.P.; He, A.; Ji, S.; Liu, C. Characteristic behavior of water radon associated with Wenchuan and Lushan earthquakes along Longmenshan fault. Radiat. Meas. 2015, 76, 44–53. [Google Scholar] [CrossRef]
- Qin, K.; Wu, L.; Zheng, S.; Ma, W. Discriminating satellite IR anomalies associated with the Ms 7.1 Yushu earthquake in China. Adv. Space Res. 2018, 61, 1324–1331. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, L.X.; Qin, K. Multiple parameters anomalies for verifying the geosystem spheres coupling effect: A case study of the 2010 Ms 7.1 Yushu earthquake in China. Ann. Geophys. 2014, 57, S0434. [Google Scholar]
- Jing, F.; Shen, X.; Kang, C.; Xiong, P. Variations of multi-parameter observations in atmosphere related to earthquake. Nat. Hazards Earth Syst. Sci. 2013, 13, 27–33. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Davidenko, D. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron. 2015, 55, 521–538. [Google Scholar] [CrossRef]
- Pulinets, S.; Budnikov, P.; Karelin, A.; Žalohar, J. Thermodynamic instability of the atmospheric boundary layer stimulated by tectonic and seismic activity. J. Atmos.-Sol.-Terr. Phys. 2023, 246, 106050. [Google Scholar] [CrossRef]
- Pulinets, S.; Mironova, I.; Miklyaev, P.; Petrova, T.; Shitov, A.; Karagodin, A. Radon Variability as a Result of Interaction with the Environment. Atmosphere 2024, 15, 167. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A Multi-parametric climatological approach to study the 2016 Amatrice–Norcia (Central Italy) earthquake preparatory phase. Pure Appl. Geophys. 2017, 174, 3673–3688. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Hong, S.; Jing, F.; Zhao, S. Progress and development on multi-parameters remote sensing application in earthquake monitoring in China. Earthq. Sci. 2013, 26, 427–437. [Google Scholar] [CrossRef]
- Hubbard, J.; Shaw, J.H. Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M = 7.9) earthquake. Nature 2009, 458, 194–197. [Google Scholar] [CrossRef]
- Sun, J.; Yue, H.; Shen, Z.; Fang, L.; Zhan, Y.; Sun, X. The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system. Geophys. Res. Lett. 2018, 45, 2230–2240. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Wu, Z.; Ren, L. Reconstructing the geometry of the Yushu Fault in the Tibetan Plateau using TLS, GPR and Trenching. Remote Sens. 2023, 15, 1994. [Google Scholar] [CrossRef]
- Wei, G.; Chen, K.; Lyu, M.; Gong, W.; Dal Zilio, L.; Ye, L.; Tu, H. Complex strike-slip faulting during the 2021 Mw 7.4 Maduo earthquake. Commun. Earth Environ. 2023, 4, 319. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Q.; Yang, Y.; Xu, Q.; Zhao, J.; Xu, L.; Liu, R. The 2021 Mw 7.4 Maduo earthquake: Coseismic slip model, triggering effect of historical earthquakes and implications for adjacent fault rupture potential. J. Geodyn. 2022, 151, 101920. [Google Scholar] [CrossRef]
- Liu, Q.; De Santis, A.; Piscini, A.; Cianchini, G.; Ventura, G.; Shen, X. Multi-parametric climatological analysis reveals the involvement of fluids in the preparation phase of the 2008 Ms 8.0 Wenchuan and 2013 Ms 7.0 Lushan earthquakes. Remote Sens. 2020, 12, 1663. [Google Scholar] [CrossRef]
- Zhang, X.; De Santis, A.; Liu, J.; Campuzano, S.A.; Yang, N.; Cianchini, G.; Ouyang, X.; D’Arcangelo, S.; Yang, M.; De Caro, M.; et al. Pre-Earthquake Oscillating and Accelerating Patterns in the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) before the 2022 Luding (China) Ms 6.8 Earthquake. Remote Sens. 2024, 16, 2381. [Google Scholar] [CrossRef]
- Cianchini, G.; Calcara, M.; De Santis, A.; Piscini, A.; D’Arcangelo, S.; Fidani, C.; Sabbagh, D.; Orlando, M.; Perrone, L.; Campuzano, S.A.; et al. The Preparation Phase of the 2023 Kahramanmaraş (Turkey) Major Earthquakes from a Multidisciplinary and Comparative Perspective. Remote Sens. 2024, 16, 2766. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Liu, S.; Cui, L.; Wu, L.; Wang, Z. Analysis on the water vapor anomaly before Wenchuan earthquake based on MODIS data. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; IEEE: Cape Town, South Africa, 2009; Volume 2, pp. II-412–II-415. [Google Scholar]
- Lu, X.; Meng, Q.; Gu, X.; Zhang, X.; Xiong, P.; Ma, W.; Xie, T. Study on multi-parameters of thermal infrared remote sensing anomalies of the Yushu earthquake. Nat. Hazards Earth Syst. Sci. Discuss. 2014, 2, 4439–4462. [Google Scholar]
- Zhong, M.; Shan, X.; Zhang, X.; Qu, C.; Guo, X.; Jiao, Z. Thermal infrared and ionospheric anomalies of the 2017 Mw 6.5 Jiuzhaigou Earthquake. Remote Sens. 2020, 12, 2843. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Wu, L.; Xu, Z. Two-step method to extract seismic microwave radiation anomaly: Case study of Ms 8.0 Wenchuan earthquake. Earthq. Sci. 2011, 24, 577–582. [Google Scholar] [CrossRef]
- Na, D.; Hongyue, L. Characteristics of Thermal Infrared Anomalies during the Earthquakes in Wenchuan, Lushan in Ya’an and Jiuzhaigou. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Chongqing, China, 6–7 March 2021; IOP Publishing: Beijing, China, 2021; Volume 783, p. 012132. [Google Scholar]
Region | Time (UTC) | Lon (°E) | Lat (°N) | Ms | Depth (km) |
---|---|---|---|---|---|
Sichuan, Wenchuan | 12 May 2008, 06:28 | 103.40 | 31.00 | 8.0 | 14 |
Qinghai, Yushu | 13 April 2010, 23:49 | 96.60 | 33.10 | 7.1 | 33 |
Sichuan, Lushan | 20 April 2013, 00:02 | 103.00 | 30.30 | 7.0 | 13 |
Sichuan, Jiuzhaigou | 8 August 2017, 13:19 | 103.82 | 33.20 | 7.0 | 20 |
Qinghai, Maduo | 21 May 2021, 18:04 | 98.34 | 34.59 | 7.4 | 17 |
Level | Height (km) | ||||
---|---|---|---|---|---|
Wenchuan | Yushu | Lushan | Jiuzhaigou | Maduo | |
72 | 0.07 | 0.05 | 0.07 | 0.09 | 0.07 |
71 | 0.20 | 0.17 | 0.20 | 0.22 | 0.19 |
68 | 0.57 | 0.53 | 0.57 | 0.59 | 0.55 |
64 | 1.09 | 1.03 | 1.09 | 1.11 | 1.05 |
58 | 2.12 | 2.01 | 2.12 | 2.13 | 2.04 |
50 | 5.08 | 4.83 | 5.08 | 5.06 | 4.85 |
43 | 10.32 | 9.85 | 10.32 | 10.26 | 9.87 |
33 | 20.30 | 19.82 | 20.28 | 20.26 | 19.87 |
Day | −75 | −70 | −65 | −60 | −55 | −50 | −45 | −40 | −35 | −30 | −25 | −20 | −15 | −10 | −5 | 0 | 5 | 10 | 15 | 20 | 25 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wenchuan | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Yushu | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lushan | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Jiuzhaigou | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Maduo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, Q.; Liu, Q.; Lin, C.; Jing, F.; Li, J.; Tian, Y.; Zhang, Z.; Shen, X. Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study. Remote Sens. 2025, 17, 311. https://doi.org/10.3390/rs17020311
Jiao Q, Liu Q, Lin C, Jing F, Li J, Tian Y, Zhang Z, Shen X. Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study. Remote Sensing. 2025; 17(2):311. https://doi.org/10.3390/rs17020311
Chicago/Turabian StyleJiao, Qijun, Qinqin Liu, Changgui Lin, Feng Jing, Jiajun Li, Yuxiang Tian, Zhenxia Zhang, and Xuhui Shen. 2025. "Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study" Remote Sensing 17, no. 2: 311. https://doi.org/10.3390/rs17020311
APA StyleJiao, Q., Liu, Q., Lin, C., Jing, F., Li, J., Tian, Y., Zhang, Z., & Shen, X. (2025). Spatiotemporal Analysis of Atmospheric Chemical Potential Anomalies Associated with Major Seismic Events (Ms ≥ 7) in Western China: A Multi-Case Study. Remote Sensing, 17(2), 311. https://doi.org/10.3390/rs17020311