Can the Future EnMAP Mission Contribute to Urban Applications? A Literature Survey
Abstract
:1. Introduction
Mission | HISUI | HyspIRI | EnMAP | ||
---|---|---|---|---|---|
Sensortype | Hyperspectral | Multispectral | Hyperspectral | TIR | Hyperspectral |
Country and | Japan | USA | Germany | ||
Organisation | METI | JPL/NASA | GFZ/DLR | ||
Spectral range (nm) | 400–2,500 | 450–900 | 400–2,500 | 4,000–12,000 | 420–2,450 |
GSD (m) | 30 | 5 | 60 | 60 | 30 |
Swath at nadir (km) | 30 | 90 | 145 | 600 | 30 |
Spectral resolution | 10 VNIR, | TBA | 10 VNIR | 400 TIR | 6 VNIR, |
(~ nm @ FWHM) | 12.5 SWIR | 80 SWIR | 10 SWIR | ||
Number of bands | 185 | 4 | >200 | 8 | 232 |
2. The Hyperspectral EnMAP Mission
Instrument type | Hyperspectral Imager (HSI) with two prism imaging spectrometers, | |
split FOV between VNIR and SWIR | ||
Scanning method | Push-broom, pointing capability up to ± 30 off nadir across track | |
Swath width (nadir) | 30 km | |
Ground sampling distance | 30 × 30 m at nadir at ± 48 northern latitude | |
Radiometric resolution | 14 bits/pixel | |
VNIR | SWIR | |
Spectral ranges (no. of bands) | 420–1,000 nm (96) | 900–2,450 nm (136) |
Spectral resolution | 8.1 ± 1.0 nm | 12.5 ± 1.5 nm |
Spectral sampling distance | 6 nm | 10 nm |
3. Application Fields of Urban Remote Sensing
Application field | Multispectral remote sensing | Hyperspectral remote sensing | ||
MR | HR | MR | HR | |
Urban development and planning | Regional mapping of build up area [40], imperviousness [41], vegetation density [42], landscape metrics [43,44,45] | Building and vegetation structure [12,46], biotope mapping [47] | Urban land cover materials [7,8], imperviousness [6] | Local mapping of build up area, imperviousness, vegetation density [48], material mapping [4,24], urban structure mapping, biotope mapping [49] |
Urban growth assessment | Built up area, land cover change [50,51,52,53] | Change detection at building level [54] | Change detection at building/material level [55] | |
Risk and vulnerability assessment | Large scale physical parameters–see other application fields | Mapping physical parameters for vulnerability estimation e.g., transportation network, open spaces [56,57] | Identification of hazardous materials [58,59] | |
Urban climate | Vegetation density e.g., by NDVI [60], heat island, related parameters: imperviousness, vegetation, albedo [61,62] | Building and vegetation structure [46] | material-based land cover, building and vegetation structure [17,63] |
3.1. Urban Development and Planning
3.2. Urban Growth Assessment
3.3. Risk and Vulnerability Assessment
3.4. Urban Climate
4. Image Analysis Approaches
4.1. Classification Schemes
4.2. Multispectral Approaches
4.3. Hyperspectral Approaches
5. Discussion of the Potential of EnMAP for Urban Studies
6. Conclusions and Outlook
Acknowledgments
References
- United Nations. World Urbanization Prospects: The 2009 Revision; Department of Econocmic and Social Affairs, Population Division: New York, NY, USA, 2010; Available online: http://esa.un.org/unpd/wup/index.htm (accessed on 25 January 2011).
- CEOS. CEOS EO Handbook—Catalogue of Satellite Instruments; ESA: Ispra, Italy, 2011; Available online: http://database.eohandbook.com/database/instrumenttable.aspx (accessed on 31 January 2011).
- Ben-Dor, E.; Levin, N.; Saaroni, H. A spectral based recognition of the urban environment using the visible and near-infrared spectral region (0.4–1.1 μm). A case study over Tel-Aviv, Israel. Int. J. Remote Sens. 2001, 22, 2193–2218. [Google Scholar] [CrossRef]
- Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Determination of robust spectral features for identification of urban surface materials in hyperspectral remote sensing data. Remote Sens. Environ. 2007, 111, 537–552. [Google Scholar] [CrossRef]
- Herold, M.; Roberts, D.A.; Gardner, M.E.; Dennison, P.E. Spectrometry for urban area remote sensing—Development and analysis of a spectral library from 350 to 2,400 nm. Remote Sens. Environ. 2004, 91, 304–319. [Google Scholar] [CrossRef]
- Weng, Q.; Hu, X.; Lu, D. Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: A comparison. Int. J. Remote Sens. 2008, 29, 3209–3232. [Google Scholar] [CrossRef]
- Xu, B.; Gong, P. Land-use/Land-cover classification with multispectral and hyperspectral EO-1 data. Photogramm. Eng. Remote Sensing 2007, 73, 955–965. [Google Scholar] [CrossRef]
- Cavalli, R.M.; Fusilli, L.; Pascucci, S.; Pignatti, S.; Santini, F. Hyperspectral sensor data capability for retrieving complex urban land cover in comparison with multispectral data: Venice City case study (Italy). Sensors 2008, 8, 3299–3320. [Google Scholar] [CrossRef]
- Ungar, S.G.; Reuter, D.; Pearlman, J.S.; Mendenhall, J.A. Overview of the Earth Observing One (EO-1) mission. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1149–1159. [Google Scholar] [CrossRef]
- Cutter, M.A.; Johns, L.S.; Lobb, D.R.; Williams, T.L.; Settle, J.J. Flight experience of the Compact High Resolution Imaging Spectrometer (CHRIS). Proc. SPIE 2004, 5159, 392. [Google Scholar]
- Small, C. Spectral Dimensionality and Scale of Urban Radiance. In Presented at 2001 AVIRIS Workshop, Pasadena, CA, USA, 27 February–2 March 2001.
- Herold, M.; Gardner, M.E.; Roberts, D.A. Spectral Resolution Requirements for Mapping Urban Areas. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1907–1919. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, J.; Peng, X.; Gong, P.; Shi, P. Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data. Int. J. Remote Sens. 2002, 23, 3057–3078. [Google Scholar] [CrossRef]
- Taubenböck, H.; Wegmann, M.; Roth, A.; Mehl, H.; Dech, S. Urbanization in India—Spatiotemporal analys using remote sensing data. Comput. Environ. Urban Syst. 2009, 33, 179–188. [Google Scholar] [CrossRef]
- Orenstein, D.E.; Bradley, B.A.; Albert, J.; Mustard, J.F.; Hamburg, S.P. How much is built? Quantifying and interpreting patterns of built space from different data sources. Int. J. Remote Sens. 2011, 32, 2621–2644. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.; Khare, D. Monitoring and modelling of urban sprawl using remote sensing and GIS techniques. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 26–43. [Google Scholar] [CrossRef]
- Heldens, W. Use of Airborne Hyperspectral Data and Height Information to Support Urban Micro Climate Characterisation. Ph.D. Thesis, Bayerischen Julius-Maximilians Universität Würzburg, Würzburg, Germany, 2010. [Google Scholar]
- Heiden, U.; Segl, K.; Roessner, S.; Kaufmann, H. Ecological Evaluation of Urban Biotope Types Using Airborne Hyperspectral HyMap Data. In Proceedings of the 2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, Berlin, Germany, 22–23 May 2003; pp. 18–22.
- Lo, C. Applications of Landsat TM data for quality of life assessment in an urban environment. Comput. Environ. Urban Syst. 1997, 21, 259–276. [Google Scholar] [CrossRef]
- Lu, D.S.; Weng, Q.H. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Wurm, M.; Taubenböck, H.; Roth, A.; Dech, S. Urban Structuring Using Multisensoral Remote Sensing Data—By the Example of German Cities: Cologne and Dresden. In Proceedings of Urban Remote Sensing Joint Event, Shanghai, China, 20–22 May 2009.
- Taubenböck, H.; Wegman, M.; Wurm, M.; Ullmann, T.; Dech, S. The Global Trend of Urbanization—Spatiotemporal Analysis of Mega Cities Using Multi-Temporal Remote Sensing, Landscape Metrics and Gradient Analysis. In Proceedings of SPIE’s International Symposium, Remote Sensing Europe, Toulouse, France, 20–23 September 2010.
- Inglada, J. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS J. Photogramm. 2007, 62, 236–248. [Google Scholar] [CrossRef]
- Roessner, S.; Segl, K.; Heiden, U.; Kaufmann, H. Automated differentiation of urban surfaces based on airborne hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1525–1532. [Google Scholar] [CrossRef]
- Kawashima, T.; Narimatsu, Y.; Inada, H.; Ishida, J.; Hamada, K.; Ito, Y.; Yoshida, J.; Ohgi, N.; Tatsumi, K.; Harada, H.; Kawanishi, T.; Sakuma, F.; Iwasaki, A. The functional evaluation model for the on-board hyperspectral radiometer. Proc. SPIE 2010, 7857, 78570M. [Google Scholar]
- Green, R.; Asner, G.; Ungar, S.; Knox, R. NASA Mission to Measure Global Plant Physiology and Functional Types. In Proceedings of 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008.
- Kaufmann, H.; Segl, K.; Chabrillat, S.; Hofer, S.; Stuffler, T.; Müller, A.; Richter, R.; Schreier, G.; Haydn, R.; Bach, H. A Hyperspectral Sensor for Environmental Mapping and Analysis. In Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2006) & 27th Canadian Symposium on Remote Sensing, Denver, CO, USA, 31 July–4 August 2006.
- Matsunaga, T.; Iwasaki, A.; Kahimura, O.; Ogawa, K.; Ohgi, N.; Tsuchida, S. HISUI—Hyperspectal Imager Suite. A Japanese Spaceborne Hyperspectral and Multispectral Remote Sensing Mission. In Presented at HyspIRI Science Workshop, Pasadena, CA, USA, 24–26 August 2010.
- Staenz, K. Terrestrial Imaging Spectroscopy Some Future Perspectives. In Proceedings of 6th EARSeL Workshop on Imaging Spectroscopy, Tel-Aviv, Israel, 16–19 March 2009.
- Mogulsky, V.; Hofer, S.; Sang, B.; Schubert, J.; Stuffler, T.; Müller, A.; Chlebek, C.; Kaufmann, H. EnMAP Hyperspectral Imaging Sensor On-Board Calibration Approach. In Proceedings of 6th EARSeL Workshop on Imaging Spectroscopy, Tel-Aviv, Israel, 16–19 March 2009.
- Guanter, L.; Segl, K.; Kaufmann, H. Simuation of the optical remote-sensing scences with application to the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2340–2351. [Google Scholar] [CrossRef]
- Stuffler, T.; Kaufmann, C.; Hofer, S.; Förster, K.P.; Schreier, G.; Mueller, A.; Eckardt, A.; Bach, H.; Penné, B.; Benz, U.; Haydn, R. The EnMAP hyperspectral imager. An advanced optical payload for future applications in Earth observation programmes. Acta Astronautica 2007, 61, 115–120. [Google Scholar] [CrossRef]
- EnMAP Hyperspectral Imager (HSI). Available online: www.enmap.org/sensors (accessed on 31 May 2011).
- Van der Linden, S.; Rabe, A.; Leitão, P.; Hostert, P. Die EnMAP-Box: Ziele, Stand der Entwicklung und Ausblick. In Presented at Nationaler EnMAP-Workshop 2010, Berlin, Germany, 25 October 2010; Available online: http://www.enmap.org/sites/enmap/files/documentation/events/2nd_WS_Potsdam/Vortraege/allgemein_enmap-box_van%20der%20linden.pdf (accessed on 21 February 2011).
- Wende, W.; Huelsmann, W.; Marty, M.; Penn-Bressel, G.; Bobylev, N. Climate protection and compact urban structures in spatial planning and local construction plans in Germany. Land Use Policy 2010, 27, 864–868. [Google Scholar] [CrossRef]
- Banzhaf, E.; Hofer, R. Monitoring urban structure types as spatial indicators with CIR aerial photographs for a more effective urban environmental management. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2008, 1, 129–138. [Google Scholar] [CrossRef]
- Haala, N.; Brenner, C. Extraction of buildings and trees in urban environments. ISPRS J. Photogramm. 1999, 54, 130–137. [Google Scholar] [CrossRef]
- Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS J. Photogramm. 2011, 66, 56–66. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Esch, T.; Himmler, V.; Schorcht, G.; Thiel, M.; Wehrmann, T.; Bachofer, F.; Conrad, C.; Schmidt, M.; Dech, S. Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data. Remote Sens. Environ. 2009, 113, 1678–1690. [Google Scholar] [CrossRef]
- Small, C. Estimation of urban vegetation abundance by spectral mixture analysis. Int. J. Remote Sens. 2001, 22, 1305–1334. [Google Scholar] [CrossRef]
- Huang, J.; Lu, X.; Sellers, J.M. A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landscape Urban Plan. 2007, 82, 184–197. [Google Scholar] [CrossRef]
- Hasse, J.; Lathrop, R. A Housing-Unit-Level approach to characterizing residential sprawl. Photogramm. Eng. Remote Sensing 2003, 69, 1021–1030. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, T.; Feng, X.; Wang, K. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. Int. J. Remote Sens. 2009, 30, 2105–2118. [Google Scholar] [CrossRef]
- Jain, S.; Jain, R.K. A remote sensing approach to establish relationships among different land covers at the micro level. Int. J. Remote Sens. 2006, 27, 2667–2682. [Google Scholar] [CrossRef]
- Heldens, W.; Esch, T.; Heiden, U.; Müller, A.; Dech, S. Exploring the Demands on Hyperspectral Data Products for Urban Planning: A Case Study in the Munich Region. In Proceedings of the 6th EARSeL Imaging Spectroscopy SIG Workshop, Tel Aviv, Israel, 16–19 March 2009.
- Bochow, M.; Segl, K.; Kaufmann, H. Automating the Build-up Process of Feature-based Fuzzy Logic Models for the Identification of Urban Biotopes from Hyperspectral Remote Sensing Data. In Proceedings of Urban Remote Sensing Joint Event, Paris, France, 11–13 April 2007.
- Madhavan, B.B.; Kubo, S.; Kurisaki, N.; Sivakumar, T.V.L.N. Appraising the anatomy and spatial growth of the Bangkok Metropolitan area using a vegetation-impervious-soil model through remote sensing. Int. J. Remote Sens. 2001, 22, 789–806. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Modelling of urban growth using spatial analysis techniques: A case study of Ajmer city (India). Int. J. Remote Sens. 2008, 29, 543–567. [Google Scholar] [CrossRef]
- Banzhaf, E.; Grescho, V.; Kindler, A. Monitoring urban to peri-urban development with integrated remote sensing and GIS information: A Leipzig, Germany case study. Int. J. Remote Sens. 2009, 30, 1675–1696. [Google Scholar] [CrossRef]
- Griffiths, P.; Hostert, P.; Gruebner, O.; Van der Linden, S. Mapping megacity growth with multi-sensor data. Remote Sens. Environ. 2010, 114, 426–439. [Google Scholar] [CrossRef]
- Durieux, L.; Lagabrielle, E.; Nelson, A. A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data. ISPRS J. Photogramm. 2008, 63, 399–408. [Google Scholar] [CrossRef]
- Bochow, M.; Segl, K.; Kaufmann, H. An Update System for Urban Biotope Maps Based on Hyperspectral Remote Sensing Data. In Proceedings of 5th EARSeL Workshop on Imaging Spectroscopy, Bruges, Belgium, 23–25 April 2007.
- Taubenböck, H.; Post, J.; Roth, A.; Zosseder, K.; Struntz, G.; Dech, S. A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Natural Hazards Earth Syst. Sci. 2008, 8, 409–420. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F.; Mauri, E. Application of satellite Remote Sensing for Urban Risk Analysis: A Case Study of the 2003 Extreme Heat Wave in Paris. In Proceedings of Urban Remote Sensing Joint Event, Paris, France, 11–13 April 2007; pp. 1–5.
- Clark, R.; Green, R.; Swayze, G.; Sutley, S.; Hoefen, T.; Livo, K.E.; Plumlee, G.; Pavri, B.; Sarture, C.; Wilson, S.; Hageman, P.; Lamothe, P.; Vance, J.; Boardman, J.; Brownfield, I.; Gent, C.; Morath, L.; Taggart, J.; Theodorakos, P.; Adams, M. Environmental Studies of the World Trade Centre Area after the September 11, 2001 Attack; Open File Report OFR-01-0429; US Geologycal Survey: Denver, CO, USA, 2001. [Google Scholar]
- Bassani, C.; Cavalli, R.M.; Cavalcante, F.; Cuomo, V.; Palombo, A.; Pascucci, S.; Pignatti, S. Deterioration status of asbestos-cement roofing sheets assessed by analyzing hyperspectral data. Remote Sens. Environ. 2007, 109, 361–378. [Google Scholar] [CrossRef]
- Stefanov, W.L.; Netzband, M. Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an and urban center. Remote Sens. Environ. 2005, 99, 31–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.O.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. 2007, 106, 375–386. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.; Grimmond, C. Modelling of urban sensible heat flux at multiple spatial scales: A demonstration using airborne hyperspectral imagery of Shanghai and a temperature-emissivity separation approach. Remote Sens. Environ. 2008, 112, 3493–3510. [Google Scholar] [CrossRef]
- Wu, C. Quantifying high-resolution impervious surfaces using spectral mixture analysis. Int. J. Remote Sens. 2009, 30, 2915–2932. [Google Scholar] [CrossRef]
- Van de Voorde, T.; De Roeck, T.; Canters, F. A comparison of two spectral mixture modelling approaches for impervious surface mapping in urban areas. Int. J. Remote Sens. 2009, 30, 4785–4806. [Google Scholar] [CrossRef]
- Pauleit, S.; Duhme, F. Assessing the environmental performance of land cover types for urban planning. Landscape Urban Plan. 2000, 52, 1–20. [Google Scholar] [CrossRef]
- Sukkopp, H.; Wittig, R. Stadtökologie. Ein Fachbuch für Studium und Praxis, 2nd ed.; Gustav Fischer: Stuttgart, Germany, 1998. [Google Scholar]
- Herold, M.; Liu, X.; Clarke, K.C. Spatial metrics and image texture for mapping urban land use. Photogramm. Eng. Remote Sensing 2003, 69, 991–1001. [Google Scholar] [CrossRef]
- Pacifici, F.; Chini, M.; Emery, W. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113, 1276–1292. [Google Scholar] [CrossRef]
- Tuia, D.; Pacifici, F.; Kanevski, M.; Emery, W. Classification of Very High Spatial Resolution Imagery using mathematical morphology and support vector machines. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3866–3879. [Google Scholar] [CrossRef]
- Goebel, J.; Wurm, M.; Wagner, G. Exploring the Linkage of Spatial Indicators from Remote Sensing Data with Survey Data—The Case of the Socio-Economic Panel (SOEP) and 3D City Models; SOEPpapers 283; DIW Berlin: Berlin, Germany, 2010; p. 14. [Google Scholar]
- Zhou, W.; Troy, A. An object-oriented approach for analysing and characterizing urban landscape at the parcel level. Int. J. Remote Sens. 2008, 29, 3119–3135. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. A robust built-up rea Presence Index by anisotropic rotation-invariant textural measure. IEEE J. Appl. Earth Obs. Remote Sens. 2008, 1, 180–192. [Google Scholar] [CrossRef]
- Pesaresi, M.; Gerhardinger, A.; Kayitakire, F. Monitoring Settlement Dynamics by Anisotropic Textural Analysis of Panchromatic VHR Data. In Proceedings of the 2007 Urban Remote Sensing Joint Event URBAN2007-URS2007, Paris, France, 11–13 April 2007.
- Gluch, R. Urban growth detection using texture analysis on merged Landsat TM and SPOT-P data. Photogramm. Eng. Remote Sensing 2002, 68, 1283–1288. [Google Scholar]
- Kurtz, C.; Passat, N.; Ganarski, P.; Puissant, A. Multi-resolution region-based clustering for urban analysis. Int. J. Remote Sens. 2010, 31, 5941–5973. [Google Scholar] [CrossRef]
- Lu, D.; Moran, E.; Hetrick, S. Detection of impervious surface change with multitemporal Landsat images in an urban-rural frontier. ISPRS J. Photogramm. 2011, 66, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Weng, Q.; Hu, X.; Liu, H. Estimating impervious surfaces using linear spectral mixture analysis with multitemporal ASTER images. Int. J. Remote Sens. 2009, 30, 4807–4830. [Google Scholar] [CrossRef]
- Elmore, A.J.; Guinn, S.M. Synergistic use of Landsat Multispectral Scanner with GIRAS land-cover data to retrieve impervious surface area for the Potomac River Basin in 1975. Remote Sens. Environ. 2010, 114, 2384–2391. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Gould, W.A.; Ramos Gonzalez, O.M. Land development, land use, and urban sprawl in Puerto Rico integrating remote sensing and population census data. Landscape. Urban Plan. 2007, 79, 288–297. [Google Scholar] [CrossRef]
- Khatsu, P.; van Westen, C. Urban Multi-Hazard Risk Analysis Using GIS and Remote Sensing: A Case Study from Kohima Town, Nagaland, India. In Proceedings of the 26th Asian Conference on Remote Sensing, Hanoi, Vietnam, 7–11 November 2005.
- Bhaskaran, S.; Datt, B.; Forster, B.; Neal, T.; Brown, M. Integrating imaging spectroscopy (445-2543 nm) and geographic information systems for post-disaster management: A case of hailstorm damage in Sydney. Int. J. Remote Sens. 2004, 25, 2625–2639. [Google Scholar] [CrossRef]
- Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1520–1528. [Google Scholar] [CrossRef]
- Ajmar, A.; Boccardo, P.; Tonolo, F.; Veloso, C. Earthquake damage assessment using remote sensing imagery. The Haiti case study. In Geoinformation for Disaster and Risk Management: Examples and Best Practices; Altan, O., Backhaus, R., Boccardo, P., Zlatanova, S., Eds.; Joint Board of Geospatial Information Societies: Copenhagen, Denmark, 2010; pp. 31–38. [Google Scholar]
- Wegscheider, S.; Post, J. Satellite-Based Crisis Information and Risk Assessment: Contributions Following the Earthquake in W. Sumatra and the Mentawai Tsunami, 2 March 2011.
- Marino, A.; Ludovisi, G.; Moccaldi, A.; Damiani, F. Hyperspectral remote sensing and GIS techniques application for the evaluation and monitoring of interactions between natural risks and industrial hazards. Proc. SPIE 2001, 4151, 231–236. [Google Scholar]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhao, H.M.; Li, P.X.; Yin, Z.Y. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens. Environ. 2006, 104, 133–146. [Google Scholar] [CrossRef]
- Xian, G. Satellite remotely-sensed land surface parameters and their climatic effects for three metropolitan regions. Adv. Space Res. 2008, 41, 1861–1869. [Google Scholar] [CrossRef]
- Jenerette, G.D.; Harlan, S.L.; Brazel, A.; Jones, N.; Larsen, L.; Stefanov, W.L. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landscape Ecol. 2007, 22, 353–365. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Pena, M.A. Relationships between remotely sensed surface parameters associated with the urban heat sink formation in Santiago, Chile. Int. J. Remote Sens. 2008, 29, 4385–4404. [Google Scholar] [CrossRef]
- Hoyano, A.; Iino, A.; Ono, M.; Tanighchi, S. Analysis of the influence of urban form and materials on sensible heat flux—A case study of Japan’s largest housing development ‘Tama New Town’. Atmos. Environ. 1999, 33, 3931–3939. [Google Scholar] [CrossRef]
- Jung, A.; Tökei, L.; Kardeván, P. Application of airborne hyperspectral and thermal images to analyse urban microclimate. Appl. Ecol. Environ. Res. 2007, 5, 165–175. [Google Scholar] [CrossRef]
- Heldens, W.; Heiden, U.; Esch, T.; Dech, S. Potential of Hyperspectral Data for Urban Micro Climate Analysis. In Proceedings of the Hyperspectral Workshop 2010, Frascati, Italy, 17–19 March 2010; p. 8.
- Frey, C.; Rigo, G.; Parlow, E. Urban radiation balance of two coastal cities in a hot and dry environment. Int. J. Remote Sens. 2007, 28, 2695–2712. [Google Scholar] [CrossRef]
- Govaerts, Y.; Lattanzio, A.; Taberner, M.; Pinty, B. Generating global surface albedo products from multiple geostationary satellites. Remote Sens. Environ. 2008, 112, 2804–2816. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D. Landscape as a continuum: An examination of the urban landscape structures and dynamics of Indianapolis City, 1991–2000, by using satellite images. Int. J. Remote Sens. 2009, 30, 2547–2577. [Google Scholar] [CrossRef]
- Roessner, S.; Segl, K.; Bochow, M.; Heiden, U.; Heldens, W.; Kaufmann, H. Potential of hyperspectral remote sensing for analyzing the urban environment. In Urban Remote Sensing: Monitoring, Synthesis and Modeling in the Urban Environment; Yang, X., Ed.; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification Scheme for Use with Remote Sensor Data; Professional Paper 964; US GPO: Washington, DC, USA, 1976. [Google Scholar]
- Ridd, M.K. Exploring a V-I-S (Vegetation-Impervious Surface-Soil) model for urban ecosystem analysis through remote sensing—Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Wu, C.; Murray, A.T. Estimating impervious surface distribution by spectral mixture analysis. Remote Sens. Environ. 2003, 84, 493–505. [Google Scholar] [CrossRef]
- Gluch, R.; Quattrochi, D.A.; Luvall, J.C. A multi-scale approach to urban thermal analysis. Remote Sens. Environ. 2006, 104, 123–132. [Google Scholar] [CrossRef]
- Small, C. High spatial resolution spectral mixture analysis of urban reflectance. Remote Sens. Environ. 2003, 88, 170–186. [Google Scholar] [CrossRef]
- Powell, R.L.; Roberts, D.A.; Dennison, P.E.; Hess, L.L. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens. Environ. 2007, 106, 253–267. [Google Scholar] [CrossRef]
- Phinn, S.; Stanford, M.; Scarth, P.; Murray, A.T.; Shyy, P.T. Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques. Int. J. Remote Sens. 2002, 23, 4131–4153. [Google Scholar] [CrossRef]
- Small, C.; Lu, J.W. Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sens. Environ. 2006, 100, 441–456. [Google Scholar] [CrossRef]
- Chen, X.; Li, L. A comparison of spectral mixture analysis methods for urban landscape using landsat ETM+ data: Los Angeles, CA. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 2008; Volume XXXVII, Part B7; pp. 635–639. [Google Scholar]
- Wentz, E.A.; Nelson, D.; Rahman, A.; Stefanov, W.L.; Roy, S.S. Expert system classification of urban land use/cover for Delhi, India. Int. J. Remote Sens. 2008, 29, 4405–4427. [Google Scholar] [CrossRef]
- Berberoglu, S.; Lloyd, C.; Atkinson, P.; Curran, P. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput. Geosci. 2000, 26, 385–396. [Google Scholar] [CrossRef]
- Song, M.; Civco, D.L.; Hurd, J.D. A competitive pixel-object approach for land cover classification. Int. J. Remote Sens. 2005, 26, 4981–4997. [Google Scholar] [CrossRef]
- Pu, R.; Gong, P.; Michishita, R.; Sasagawa, T. Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data. Remote Sens. Environ. 2008, 112, 939–954. [Google Scholar] [CrossRef]
- Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens. 2008, 29, 3105–3117. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Spectral-spatial classification of hyperspectral images using segmentation-derived adaptive neighborhoods. In Multivariate Image Processing; Collet, C., Chanussot, J., Chendi, K., Eds.; ISTE Ltd and John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009; pp. 341–374. [Google Scholar]
- Schaepman, M.E.; Ustin, S.L.; Plaza, A.J.; Painter, T.H.; Verrelst, J.; Liang, S. Earth system science related imaging spectroscopy—An assessment. Remote Sens. Environ. 2009, 113 (Suppl. 1), S123–S137. [Google Scholar] [CrossRef]
- Van der Meer, F.; de Jong, S.M. Imaging Spectrometry; Springer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Herold, M.; Roberts, D. Spectral characteristics of asphalt road aging and detoriation: Implications for remote-sensing applications. Appl. Opt. 2005, 44, 4327–4334. [Google Scholar] [CrossRef] [PubMed]
- Lacherade, S.; Miesch, C.; Briottet, X.; Le Men, H. Spectral variability and bidirectional reflectance behaviour of urban materials at a 20 cm spatial resolution in the visible and near?infrared wavelengths. A case study over Toulouse (France). Int. J. Remote Sens. 2005, 26, 3859–3866. [Google Scholar] [CrossRef]
- Feingersh, T.; Ben-Dor, E.; Portugali, J. Construction of synthetic spectral reflectance of remotely sensed imagery for planning purposes. Environ. Modell. Softw. 2007, 22, 335–348. [Google Scholar] [CrossRef]
- Meister, G.; Rothkirch, A.; Spitzer, H.; Bienlein, J.K. Large-scale bidirectional reflectance model for urban areas. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1927–1942. [Google Scholar] [CrossRef]
- Bochow, M.; Rogass, C.; Segl, K.; Kaufmann, H. Automatic Shadow Detection in Hyperspectral VIS-NIR Images. In Proceedings of the 7th EARSeL Workshop of the Special Interest Group in Imaging Spectroscopy, Edinburgh, UK, 11–13 April 2011.
- Richter, R.; Müller, A. De-shadowing of satellite/airborne imagery. Int. J. Remote Sens. 2005, 26, 3137–3148. [Google Scholar] [CrossRef]
- Dell’Acqua, F.; Gamba, P.; Trianni, G. A Preliminary Study on Separability of Paving Materials in Shadowed Hyperspectral Pixels from a Central Urban Area. In Proceedings of ISPRS Joint Conferences: 3rd International Symposium Remote Sensing and Data Fusion Over Urban Areas (URBAN 2005) and 5th International Symposium Remote Sensing of Urban Areas (URS 2005), Tempe, AZ, USA, 14–16 March 2005.
- Hughes, G. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 3–17. [Google Scholar] [CrossRef]
- Bue, B.; Merenyi, E.; Csatho, B. Automated labeling of materials in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4059–4070. [Google Scholar] [CrossRef]
- Chang, C. An information theoretic-based approach to spectral variability, similarity and discriminability for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef]
- Kruse, F.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Chen, J.; Hepner, G.F. Investigation of Imaging Spectroscopy for Discriminating Urban Land Covers and Surface Materials. In Presented at AVIRIS Workshop Proceedings, Pasadena, CA, USA, 27 February–2 March 2001.
- Clark, R.; Gallagher, A.; Swayze, G. Material Absorption Band Depth Mapping of Imaging Spectrometer Data Using a Complete Band Shape Least-Squares Fit with Library Reference Spectra. In Proceedings of the 2nd AVIRIS Earth Science Workshop, Pasadena, CA, USA, 4–5 June 1990.
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res.: Planets 2003, 108, 5131. [Google Scholar] [CrossRef]
- Yang, H.; Ma, B.; Du, Q.; Yang, C. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information. J. Appl. Remote Sens. 2010, 4, 041890. [Google Scholar] [CrossRef]
- Van der Linden, S.; Janz, A.; Waske, B.; Eiden, M.; Hostert, P. Classifying segmented hyperspectral data from a heterogeneous urban environment. J. Appl. Remote Sens. 2007, 1, 013543. [Google Scholar] [CrossRef]
- Bruzzone, L.; Carlin, L. A multilevel context-based system for classification of very high spation resolution images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2587–2600. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A.; Marconcini, M.; Tilton, J.C.; Trianni, G. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113 (Suppl. 1), S110–S122. [Google Scholar] [CrossRef]
- Adams, J.; Smith, M.; Gillespie, A. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In Remote Geochemical Analysis: Elemental and Mineralogical Composition; Pieters, C., Englert, P., Eds.; Cambridge University Press: New York, NY, USA, 1993; pp. 145–166. [Google Scholar]
- Segl, K.; Roessner, S.; Heiden, U.; Kaufmann, H. Fusion of spectral and shape features for identification of urban surface cover types using reflective and thermal hyperspectral data. ISPRS J. Photogramm. 2003, 58, 99–112. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1678–1690. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in Spectral Mixture Analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Rogge, D.; Rivard, B.; Zhang, J.; Harris, J.; Sanchez, A.; Feng, J. Integration of spatial-spectral information for the improved extraction of endmembers. Remote Sens. Environ. 2007, 110, 287–303. [Google Scholar] [CrossRef]
- Roberts, D.; Gardner, M.; Church, R. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture analysis. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Borel, C.; Ewald, K.; Manzardo, M.; Wamsley, C.; Jacobson, J. Adjoint Radiosity Based Algorithms for Retrieving Target Reflectances in Urban Area Shadows. In Proceedings of the 6th EARSeL Imaging Spectroscopy SIG Workshop, Tel Aviv, Israel, 16–19 March 2009.
- Keshava, N. A Survey of Spectral Unmixing Algorithms. Lincoln Laboratory J. 2003, 14, 55–78. [Google Scholar]
- Keshava, N.; Mustard, J. Spectral unmixing. IEEE Sign. Proc. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Benediktsson, J.; Palmason, J.; Sveinsson, J.; Chanussot, J. Decision Level Fusion in Classification of Hyperspectral Data from Urban Areas. In Proceedings of International Geoscience and Remote Sensing Symposium (IGARSS), Anchorage, AK, USA, 20–24 September 2004; Volume 1, pp. 73–76.
- Plaza, A.; Martinez, P.; Perez, R.; Plaza, J. A new approach to mixed pixel classification of hyperspectral imagery based on extended morphological profiles. Pattern Recog. 2004, 37, 1097–1116. [Google Scholar] [CrossRef]
- Lizarazo, I. SVM-based segmentation and classification of remotely sensed data. Int. J. Remote Sens. 2008, 29, 7277–7283. [Google Scholar] [CrossRef]
- Kirkland, L.; Kenneth, C.; Salisbury, J. Thermal infrared spectral band detection limits for unidentified surface materials. Appl. Opt. 2001, 40, 4852–4864. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Richter, R.; Habermeyer, M.; Dech, S.; Segl, K.; Kaufmann, H. Spectroradiometric requirements for the reflective module of the airborne spectrometer ARES. IEEE Geosci. Remote Sens. Lett. 2005, 2, 329–332. [Google Scholar] [CrossRef]
- Kirkland, L.; Herr, K.; Adams, P. Infrared stealthy surfaces: Why TES and THEMIS may miss some substantial mineral deposits on Mars and implications for remote sensing of planetary surfaces. J. Geophys. Res. 2003, 108, 5137. [Google Scholar] [CrossRef]
- Sukopp, H.; Weiler, S. Biotope mapping and nature conservation strategies in urban areas of the Federal Republic of Germany. Landscape Urban Plan. 1988, 15, 39–58. [Google Scholar] [CrossRef]
- Heiden, U.; Heldens, W.; Roessner, R.; Segl, K.; Esch, T.; Mueller, A. Imaging spectroscopy for the characterization of urban structures. Landscape Urban Plan. 2011. submitted. [Google Scholar]
- Bochow, M.; Taubenböck, H.; Segl, K.; Kaufmann, H. An Automated and Adaptable Approach for Characterizing and Partitioning Cities into Urban Structure Types. In Proceedings of IGARSS’ 2010, Honolulu, HI, USA, 25–30 July 2010; pp. 1796–1799.
- Mende, A.; Heiden, U.; Bachmann, M.; Hoja, D.; Buchroithner, M. Development of a New Spectral Library Classifier for Airborne Hyperspectral Images on Heterogeneous Environments. In Proceedings of the 7th EARSeL Workshop of the Special Interest Group in Imaging Spectroscopy, Edinburgh, UK, 11–13 April 2011.
- Barducci, A.; Guzzi, D.; Marcoionni, P.; Pippi, I. Investigating the angular and spectral properties of natural targets using CHRIS-PROBA images of San Rossore test site. Int. J. Remote Sens. 2009, 30, 533–553. [Google Scholar] [CrossRef]
- Rautiainen, M.; Lang, M.; Mottus, M.; Kuusk, A.; Nilson, T.; Kuusk, J.; Lukk, T. Multi-angular reflectance properties of a hemiboreal forest: An analysis using CHRIS PROBA data. Remote Sens. Environ. 2008, 112, 2627–2642. [Google Scholar] [CrossRef]
- Schill, S.R.; Jensen, J.R.; Raber, G.T.; Porter, D.E. Temporal modelling of bidirectional reflectance distribution function (BRDF) in coastal vegetation. GISci. Remote Sens. 2004, 41, 116–135. [Google Scholar] [CrossRef]
- Meister, G.; Rothkirch, A.; Wiemker, R.; Bienlein, J.; Spitzer, H. Modeling the directional reflectance (BRDF) of a corrugated roof and experimental verification. In Proceedings of the International Geoscience and Remote Sensing Symposium, Seattle, WA, USA, 6–10 July 1998.
- Meister, G. Bidirectional Reflectance of Urban Surfaces. Ph.D. Thesis, Fachbereich Physik der Universität Hamburg, Hamburg, Germany, 2000. [Google Scholar]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Ehlers, M.; Klonus, S.; Johan, R.P.; Rosso, P. Multi-sensor image fusion for pansharpening in remote sensing. Int. J. Image Data Fusion 2010, 1, 25–45. [Google Scholar] [CrossRef]
- Ehlers, M.; Klonus, S. Erhalt der spektralen Charakteristika bei der Bildfusion durch FFT basierte Filterung. Photogrammetrie-Fernerkundung-Geoinformation 2004, 6, 495–506. [Google Scholar]
- Ehlers, M. Segment Based Image Analysis and Image Fusion. In Proceedings of ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007.
- Palubinskas, G.; Reinartz, P. Multi-Resolution, Multi-Sensor Image Fusion: General Fusion Framework. In Proceedings of Joint Urban Remote Sensing Event JURSE, Munich, Germany, 11–13 April 2011.
- Eismann, M.T.; Hardie, R. Hyperspectral Resolution Enhancement Using High-Resolution Multispectral Imagery With Arbitrary Response Functions. IEEE Trans. Geosci. Remote Sens. 2005, 43, 455–465. [Google Scholar] [CrossRef]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhäckel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Oke, T. The urban energy balance. Progr. Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Segl, K.; Guanter, L.; Kaufmann, H.; Schubert, J.; Kaiser, S.; Sang, B.; Hofer, S. Simulation of spatial sensor characeristics in the context of the EnMAP hyperspectral mission. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3046–3054. [Google Scholar] [CrossRef]
- Migdall, S.; Bach, H.; Kaufmann, H. Simulation of EnMAP-like Hyperspectral Images Based on Textural Information and Radiative Transfer Approach. In Proceedings of the Hyperspectral Workshop, Frascati, Italy, 17–19 March 2010.
- Lacherade, S.; Miesch, C.; Boldo, D.; Briotte, X.; Valorge, C.; Le Men, H. ICARE: A physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas. Meteorol. Atmos. Phys. 2008, 102, 209–222. [Google Scholar] [CrossRef]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Heldens, W.; Heiden, U.; Esch, T.; Stein, E.; Müller, A. Can the Future EnMAP Mission Contribute to Urban Applications? A Literature Survey. Remote Sens. 2011, 3, 1817-1846. https://doi.org/10.3390/rs3091817
Heldens W, Heiden U, Esch T, Stein E, Müller A. Can the Future EnMAP Mission Contribute to Urban Applications? A Literature Survey. Remote Sensing. 2011; 3(9):1817-1846. https://doi.org/10.3390/rs3091817
Chicago/Turabian StyleHeldens, Wieke, Uta Heiden, Thomas Esch, Enrico Stein, and Andreas Müller. 2011. "Can the Future EnMAP Mission Contribute to Urban Applications? A Literature Survey" Remote Sensing 3, no. 9: 1817-1846. https://doi.org/10.3390/rs3091817