Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Satellite Imagery and GIS Data
2.4. Data Analysis
2.4.1. Interpretation of Tree Tops
2.4.2. Supervised Classification and Counting for Different Tree Species
3. Results
3.1. Interpretation of Tree Tops
3.2. Pixel-Based Supervised Classification of Tree Species
3.3. Object-Based Supervised Classification of Tree Species
3.4. Counting Trees of Different Species in the Study Area
4. Discussions
5. Conclusion
Acknowledgments
Conflicts of Interest
References
- Katoh, M.; Gougeon, F.A. Improving the precision of tree counting by combining tree detection with crown delineation and classification on homogeneity guided smoothed high resolution (50 cm) multispectral airborne digital data. Remote Sens 2012, 4, 1411–1424. [Google Scholar]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band WorldView-2 satellite data. Remote Sens 2012, 4, 2661–2693. [Google Scholar]
- State Forestry Administration of China. The Main Results of the 7th National Forest Resource Inventory (2004–2008). (in Chinese);. 2010. Available online: http://www.forestry.gov.cn/portal/main/s/65/content-326341.html (accessed on 6 February 2013).
- Ke, Y.; Zhang, W.; Quackenbush, L.J. Active contour and hill climbing for tree crown detection and delineation. Photogramm. Eng. Remote Sens 2010, 76, 1169–1181. [Google Scholar]
- Wulder, M.; Niemann, K.O.; Goodenough, D.G. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens. Environ 2000, 73, 103–114. [Google Scholar]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ 2005, 96, 375–398. [Google Scholar]
- Larsen, M. Single tree species classification with a hypothetical multi-spectral satellite. Remote Sens. Environ 2007, 110, 523–532. [Google Scholar]
- Nagendra, H. Using remote sensing to assess biodiversity. Int. J. Remote Sens 2001, 22, 2377–2400. [Google Scholar]
- Hill, D.A.; Leckie, D.G. Forest Regeneration: Individual Tree Crown Detection Techniques for Density and Stocking Assessments. Proceedings of the International Forum on Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, Victoria, BC, Canada, 10–12 February 1998; pp. 169–177.
- Jensen, J.R. Remote Sensing and GIS Integration. In Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 2007; pp. 544–545. [Google Scholar]
- Katoh, M. The Identification of Large Size Trees. In Forest Remote Sensing: Applications from Introduction(in Japanese),, 3rd ed.; Japan Forestry Investigation Committee: Tokyo, Japan, 2010; pp. 308–309. [Google Scholar]
- Leckie, D.G.; Gillis, M.D. A Crown-Following Approach to the Automatic Delineation of Individual Tree Crowns in High Spatial Resolution Aerial Images. Proceedings of the International Forum on Airborne Multispectral Scanning for Forestry and Mapping, Chalk River, ON, Canada, 13–16 April 1993; pp. 86–93.
- Koukal, T.; Atzberger, C. Potential of multi-angular data derived from a digital aerial frame camera for forest classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2012, 5, 30–43. [Google Scholar]
- Gougeon, F.A.; Leckie, D.G. The individual tree crown approach applied to IKONOS images of a coniferous plantation area. Photogramm. Eng. Remote Sens 2006, 72, 1287–1297. [Google Scholar]
- Katoh, M. Comparison of high resolution IKONOS imageries to interpret individual trees (in Japanese with English abstract). J. Jpn. For. Soc 2002, 84, 221–230. [Google Scholar]
- Wang, L.; Gong, P.; Biging, G.S. Individual tree-crown delineation and treetop detection in high-spatial resolution aerial imagery. Photogramm. Eng. Remote Sens 2004, 70, 351–357. [Google Scholar]
- Erikson, M. Segmentation of individual tree crowns in color aerial photographs using region growing supported by fuzzy rules. Can. J. For. Res 2003, 33, 1557–1563. [Google Scholar]
- Katoh, M.; Gougeon, F.A.; Leckie, D.G. Application of high-resolution airborne data using individual tree crown in Japanese conifer plantations. J. For. Res 2009, 14, 10–19. [Google Scholar]
- Leckie, D.G.; Gougeon, F.A.; Walsworth, N.; Paradine, D. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sens. Environ 2003, 85, 355–369. [Google Scholar]
- Leckie, D.G.; Gougeon, F.A.; Tinis, S.; Nelson, T.; Burnett, C.N.; Paradine, D. Automated tree recognition in old growth conifer stands with high resolution digital imagery. Remote Sens. Environ 2005, 94, 311–326. [Google Scholar]
- Pollock, R. A Model-Based Approach to Automatically Locating Individual Tree Crowns in High-Resolution Images of Forest Canopies. Proceedings of the First International Airborne Remote Sensing Conference and Exhibition, Strasbourg, France, 12–15 September 1994; pp. 11–15.
- Culvenor, D.S. Extracting Individual Tree Information. In Remote Sensing of Forest Environment: Concepts and Case Studies; Wulder, M., Franklin, S.E., Eds.; Kluwer Academic Publishers: Boston, MA, USA/Dordrecht, The Netherlands/London, UK, 2003; pp. 255–278. [Google Scholar]
- Erikson, M.; Olofsson, K. Comparison of three individual tree crown detection methods. Mach. Vis. Appl 2005, 16, 258–265. [Google Scholar]
- Gougeon, F.A. A crown following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can. J. Remote Sens 1995, 21, 274–284. [Google Scholar]
- Ke, Y.; Quackenbush, L.J. A comparison of three methods for automatic tree crown detection and delineation methods from high spatial resolution imagery. Int. J. Remote Sens 2011, 32, 3625–3647. [Google Scholar]
- Mutanga, O.; Adma, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf 2012, 18, 399–406. [Google Scholar]
- Sridharan, H. Multi-level Urban Forest Classification Using the WorldView-2 8-Band Hyperspectral Imagery. In 8 Bands Research Challenge; DigitalGlobe: Longmont, CO, USA, 2010. [Google Scholar]
- Gougeon, F.A. The ITC Suite Manual: A Semi-Automatic Individual Tree Crown (ITC) Approach to Forest Inventories; Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada: Victoria, BC, Canada, 2010; pp. 1–92. [Google Scholar]
- Deng, S.Q.; Yan, J.F.; Guan, Q.W. Spatial structure of scenic forest of Liquidamabar formosana in Nanjing Purple Mountain (in Chinese with English abstract). J. Nanjing For. Univ. (Natl. Sci. Ed.) 2010, 34, 117–122. [Google Scholar]
- Deng, S.; Yan, J.; Guan, Q.; Katoh, M. Short-term effects of thinning intensity on scenic beauty values of different stands. J. For. Res 2013, 18, 209–219. [Google Scholar]
- Hao, R.M.; Wei, H.T. Succession tendency of Zhongshan vegetation and discussion of possibility of reconstructing evergreen and deciduous broad-leaved mixed forest (in Chinese with English abstract). Acta Phytoecol. Sin 1999, 23, 108–115. [Google Scholar]
- Updike, T.; Comp, C. Radiometric Use of WorldView-2 Imagery; Technical Note; DigitalGlobe: Longmont, CO, USA, 2010. [Google Scholar]
- Eckert, S. Improved forest biomass and carbon estimations using texture measures from WorldView-2 satellite data. Remote Sens 2012, 4, 810–829. [Google Scholar]
- Jiangsu Forestry Investigation and Planning Institute. Report on the Forest Resources of the Purple Mountain National Park; (in Chinese); Purple Mountain National Park Administration: Nanjing, China, 2002; pp. 1–183. [Google Scholar]
- Gougeon, F.A.; Leckie, D.G. Forest Information Extraction from High Spatial Resolution Images Using an Individual Tree Crown Approach; Canadian Forest Service: Victoria, BC, Canada, 2003; p. 27. [Google Scholar]
- Landgrebe, D.; Biehl, L. An Introduction to MultiSpec (Version 5.01); Purdue University: West Lafayette, IN, USA, 2001; p. 27. [Google Scholar]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf 2011, 13, 884–893. [Google Scholar]
- Yan, G.; Mas, J.F.; Maathuis, B.H.P.; Zhang, X.; van Dijk, P.M. Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia, China. Int. J. Remote Sens 2006, 27, 4039–4055. [Google Scholar]
- Haara, A.; Haarala, M. Tree species classification using semi-automatic delineation of trees on aerial images. Scand. J. For. Res 2002, 17, 556–565. [Google Scholar]
- Katoh, M. Classifying tree species in a northern mixed forest using high-resolution IKONOS data. J. For. Res 2004, 9, 7–14. [Google Scholar]
- Schlerf, M.; Atzberger, C. Vegetation structure retrieval in beech and spruce forests using spectrodirectional satellite data. IEEE J. Sel. Top. Appl 2012, 5, 8–17. [Google Scholar]
- Sridharan, H. Multi-Level Comparison of WorldView-2 8-Band and AISA Hyperspectral Imageries for Urban Forest Classification. In 8-Band Research Challenge; DigitalGlobe: Longmont, CO, USA, 2011. [Google Scholar]
- Katoh, M. Tree Height Measurement Using LiDAR Data. In Forest Remote Sensing: Applications from Introduction; (in Japanese); Japan Forestry Investigation Committee: Tokyo, Japan, 2004. [Google Scholar]
NO. | Density (Stem/ha) | Average DBH (cm) | Average Height (m) | Forest Type | NO. | Density (Stem/ha) | Average DBH (cm) | Average Height (m) | Forest Type |
---|---|---|---|---|---|---|---|---|---|
1 | 311 | 36.2 | 12.0 | B | 46 | 2,000 | 11.9 | 8.8 | M |
2 | 1,956 | 10.1 | 8.6 | B | 47 | 1,422 | 12.9 | 9.6 | M |
3 | 1,467 | 13.0 | 10.0 | M | 48 | 711 | 18.0 | 11.0 | B |
4 | 1,289 | 12.4 | 9.5 | C | 49 | 1,022 | 12.5 | 9.4 | M |
5 | 1,378 | 16.2 | 10.8 | C | 50 | 2,178 | 11.2 | 8.8 | M |
6 | 844 | 16.6 | 11.2 | B | 51 | 2,178 | 10.1 | 8.4 | M |
7 | 1,644 | 12.2 | 9.4 | M | 52 | 1,378 | 12.6 | 9.4 | M |
8 | 1,956 | 12.7 | 9.5 | M | 53 | 1,422 | 15.4 | 10.4 | M |
9 | 1,100 | 17.2 | 11.4 | M | 54 | 1,778 | 12.1 | 9.2 | M |
10 | 1,156 | 16.5 | 11.1 | M | 55 | 1,067 | 13.6 | 10.1 | M |
11 | 1,375 | 14.0 | 10.0 | M | 56 | 1,111 | 15.3 | 11.0 | C |
12 | 1,244 | 13.2 | 9.4 | C | 57 | 1,200 | 11.0 | 8.9 | B |
13 | 2,075 | 10.7 | 8.4 | C | 58 | 1,156 | 14.8 | 10.3 | B |
14 | 1,822 | 11.6 | 8.9 | M | 59 | 1,689 | 11.9 | 9.7 | B |
15 | 844 | 17.8 | 11.3 | B | 60 | 1,911 | 10.8 | 8.6 | M |
16 | 1,644 | 11.9 | 8.6 | M | 61 | 1,067 | 10.0 | 8.0 | M |
17 | 1,650 | 13.6 | 10.4 | B | 62 | 1,467 | 10.6 | 8.7 | B |
18 | 650 | 15.7 | 11.1 | M | 63 | 1,111 | 14.6 | 10.4 | B |
19 | 1,333 | 13.0 | 9.2 | M | 64 | 1,644 | 13.5 | 9.8 | C |
20 | 1,125 | 13.4 | 9.3 | B | 65 | 1,175 | 11.5 | 8.6 | B |
21 | 1,400 | 10.2 | 7.9 | B | 66 | 1,250 | 13.2 | 9.5 | B |
22 | 1,325 | 15.4 | 10.3 | B | 67 | 533 | 11.3 | 9.0 | B |
23 | 1,156 | 13.5 | 9.6 | B | 68 | 533 | 17.5 | 11.1 | B |
24 | 978 | 19.4 | 12.4 | B | 69 | 889 | 9.9 | 8.4 | B |
25 | 1,289 | 12.2 | 9.2 | B | 70 | 1,556 | 10.0 | 8.2 | M |
26 | 800 | 16.1 | 10.3 | M | 71 | 1,111 | 11.4 | 8.6 | B |
27 | 1,689 | 10.8 | 8.7 | B | 72 | 1,778 | 10.2 | 8.3 | B |
28 | 1,689 | 10.3 | 8.9 | M | 73 | 1,378 | 15.2 | 9.9 | B |
29 | 1,378 | 11.9 | 9.3 | B | 74 | 933 | 17.7 | 10.9 | B |
30 | 1,467 | 12.2 | 9.2 | B | 75 | 1,956 | 10.1 | 8.4 | B |
31 | 1,422 | 15.5 | 10.8 | M | 76 | 1,911 | 10.6 | 8.7 | B |
32 | 1,467 | 15.9 | 10.8 | M | 77 | 1,289 | 13.8 | 10.4 | B |
33 | 550 | 27.9 | 14.4 | M | 78 | 1,467 | 13.5 | 10.1 | B |
34 | 1,067 | 16.6 | 10.0 | B | 79 | 2,000 | 11.6 | 9.4 | C |
35 | 889 | 20.4 | 11.6 | B | 80 | 978 | 8.6 | 7.7 | B |
36 | 1,200 | 13.4 | 9.6 | B | 81 | 1,556 | 14.1 | 10.5 | C |
37 | 1,333 | 11.1 | 9.4 | B | 82 | 978 | 20.6 | 12.7 | B |
38 | 1,911 | 8.4 | 7.9 | B | 83 | 1,289 | 14.9 | 10.6 | B |
39 | 1,800 | 11.4 | 9.2 | M | 84 | 1,022 | 21.0 | 12.4 | B |
40 | 800 | 17.2 | 11.2 | M | 85 | 800 | 16.1 | 11.3 | B |
41 | 933 | 14.9 | 10.7 | B | 86 | 933 | 15.8 | 10.7 | B |
42 | 2,533 | 9.5 | 8.0 | M | 87 | 400 | 10.1 | 8.5 | B |
43 | 2,711 | 9.3 | 7.9 | M | 88 | 356 | 15.4 | 11.1 | B |
44 | 1,556 | 12.6 | 9.5 | M | 89 | 1,156 | 18.0 | 11.7 | B |
45 | 1,600 | 12.5 | 9.4 | M | 90 | 1,200 | 17.8 | 11.3 | B |
Class Name* | Class NO. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Number Samples | Producer’s Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Building | 1 | 12,819 | 49 | 103 | 6,930 | 3 | 36 | 10 | 2 | 0 | 0 | 1 | 1 | 2 | 3 | 6 | 0 | 22,966 | 55.8 |
Water | 2 | 4 | 81,143 | 0 | 5 | 0 | 0 | 0 | 0 | 611 | 8 | 82 | 0 | 5 | 0 | 0 | 0 | 83,059 | 97.7 |
Soil | 3 | 185 | 0 | 11,067 | 23 | 17 | 20 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 11,774 | 94.0 |
Road | 4 | 424 | 6 | 38 | 8,299 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 9,037 | 91.8 |
Grass | 5 | 4 | 0 | 6 | 0 | 2,739 | 237 | 52 | 6 | 0 | 0 | 86 | 192 | 33 | 9 | 106 | 0 | 3,607 | 75.9 |
Of | 6 | 5 | 5 | 170 | 14 | 965 | 8,688 | 526 | 96 | 145 | 159 | 708 | 2,883 | 1,140 | 1,580 | 120 | 0 | 17,875 | 48.6 |
Cd | 7 | 0 | 0 | 0 | 1 | 5 | 13 | 1,132 | 0 | 80 | 31 | 27 | 0 | 118 | 3 | 0 | 0 | 1,419 | 79.8 |
Mg | 8 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 1,215 | 0 | 5 | 0 | 49 | 4 | 132 | 93 | 0 | 1,543 | 78.7 |
Pco | 9 | 0 | 2 | 0 | 0 | 3 | 6 | 33 | 2 | 829 | 300 | 103 | 0 | 48 | 9 | 3 | 0 | 1,352 | 61.3 |
Pm | 10 | 0 | 8 | 0 | 0 | 3 | 55 | 445 | 3 | 664 | 4,306 | 144 | 1 | 89 | 73 | 40 | 15 | 5,902 | 73.0 |
Pe | 11 | 1 | 0 | 0 | 0 | 68 | 50 | 441 | 7 | 289 | 190 | 1,144 | 0 | 267 | 7 | 33 | 0 | 2,570 | 44.5 |
Pno | 12 | 1 | 0 | 5 | 2 | 27 | 102 | 0 | 116 | 0 | 0 | 0 | 2,583 | 1 | 164 | 52 | 0 | 3,099 | 83.3 |
Ba | 13 | 0 | 1 | 0 | 0 | 30 | 87 | 239 | 4 | 135 | 107 | 152 | 0 | 2,365 | 11 | 29 | 0 | 3,178 | 74.4 |
Lf | 14 | 10 | 2 | 0 | 0 | 2 | 233 | 0 | 415 | 12 | 86 | 1 | 141 | 27 | 6,427 | 136 | 24 | 7,694 | 83.5 |
Qa | 15 | 8 | 0 | 0 | 0 | 37 | 137 | 0 | 1,076 | 30 | 68 | 37 | 548 | 29 | 1061 | 8,265 | 0 | 11,662 | 70.9 |
Sh | 16 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 84 | 0 | 0 | 0 | 39 | 2 | 7,033 | 7,380 | 95.3 |
Total | 13,461 | 81,227 | 11,389 | 15,274 | 3,901 | 9,670 | 2,878 | 2,942 | 2,799 | 5,344 | 2,485 | 6,402 | 4,128 | 9,518 | 8,885 | 7,072 | 194,117 | ||
User’s Accuracy (%) | 95.2 | 99.9 | 97.2 | 54.3 | 70.2 | 89.8 | 39.3 | 41.3 | 29.6 | 80.6 | 46.0 | 40.3 | 57.3 | 67.5 | 93.0 | 99.4 |
Signature Name* | Class NO. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Building | 1 | 0 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
Water | 2 | 2,000 | 0 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
Soil | 3 | 2,000 | 2,000 | 0 | 1,998 | 1,974 | 1,988 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 1,991 | 2,000 | 2,000 | 1,999 | 2,000 |
Road | 4 | 2,000 | 2,000 | 1,998 | 0 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 |
Grass | 5 | 2,000 | 2,000 | 1,974 | 2,000 | 0 | 1,663 | 1,996 | 1,997 | 2,000 | 1,999 | 1,911 | 1,953 | 1,972 | 1,998 | 1,924 | 2,000 |
Of | 6 | 2,000 | 2,000 | 1,988 | 2,000 | 1,663 | 0 | 1,943 | 1,870 | 1,994 | 1,986 | 1,776 | 1,619 | 1,775 | 1,775 | 1,810 | 2,000 |
Cd | 7 | 2,000 | 2,000 | 2,000 | 2,000 | 1,996 | 1,943 | 0 | 2,000 | 1,702 | 1,566 | 1,364 | 2,000 | 1,102 | 1,990 | 1,997 | 2,000 |
Mg | 8 | 2,000 | 2,000 | 2,000 | 2,000 | 1,997 | 1,870 | 2,000 | 0 | 2,000 | 1,999 | 1,999 | 1,643 | 1,997 | 1,410 | 1,430 | 2,000 |
Pco | 9 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 1,994 | 1,702 | 2,000 | 0 | 902 | 1,346 | 2,000 | 1,518 | 1,985 | 1,998 | 2,000 |
Pm | 10 | 2,000 | 2,000 | 2,000 | 2,000 | 1,999 | 1,986 | 1,566 | 1,999 | 902 | 0 | 1,543 | 2,000 | 1,599 | 1,946 | 1,994 | 2,000 |
Pe | 11 | 2,000 | 2,000 | 2,000 | 2,000 | 1,911 | 1,776 | 1,364 | 1,999 | 1,346 | 1,543 | 0 | 2,000 | 968 | 1,991 | 1,977 | 2,000 |
Pno | 12 | 2,000 | 2,000 | 1,991 | 2,000 | 1,953 | 1,619 | 2,000 | 1,643 | 2,000 | 2,000 | 2,000 | 0 | 2,000 | 1,629 | 1,633 | 2,000 |
Ba | 13 | 2,000 | 2,000 | 2,000 | 2,000 | 1,972 | 1,775 | 1,102 | 1,997 | 1,518 | 1,599 | 968 | 2,000 | 0 | 1,971 | 1,984 | 2,000 |
Lf | 14 | 2,000 | 2,000 | 2,000 | 2,000 | 1,998 | 1,775 | 1,990 | 1,410 | 1,985 | 1,946 | 1,991 | 1,629 | 1,971 | 0 | 1,730 | 2,000 |
Qa | 15 | 2,000 | 2,000 | 1,999 | 2,000 | 1,924 | 1,810 | 1,997 | 1,430 | 1,998 | 1,994 | 1,977 | 1,633 | 1,984 | 1,730 | 0 | 2,000 |
Sh | 16 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | 0 |
Class Name * | Of | Cd | Mg | Pco | Pm | Pe | Pno | Ba | Lf | Qa | Number Samples | Producer’s Accuracy (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Of | 30 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 33 | 90.9 |
Cd | 0 | 27 | 1 | 2 | 2 | 2 | 1 | 2 | 0 | 0 | 37 | 73.0 |
Mg | 1 | 0 | 34 | 0 | 0 | 0 | 5 | 0 | 5 | 0 | 45 | 75.6 |
Pco | 0 | 5 | 0 | 19 | 1 | 4 | 0 | 1 | 0 | 0 | 30 | 63.3 |
Pm | 0 | 1 | 0 | 2 | 57 | 2 | 0 | 2 | 0 | 1 | 65 | 87.7 |
Pe | 0 | 1 | 1 | 3 | 3 | 33 | 0 | 1 | 0 | 0 | 42 | 78.6 |
Pno | 2 | 2 | 4 | 0 | 0 | 0 | 34 | 0 | 8 | 0 | 50 | 68.0 |
Ba | 0 | 2 | 0 | 1 | 2 | 2 | 1 | 22 | 0 | 1 | 31 | 71.0 |
Lf | 1 | 1 | 4 | 3 | 1 | 0 | 4 | 0 | 71 | 2 | 87 | 81.6 |
Qa | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 78 | 80 | 97.5 |
Total | 34 | 39 | 45 | 31 | 66 | 43 | 46 | 28 | 86 | 82 | 500 | |
User’s Accuracy (%) | 88.2 | 69.2 | 75.6 | 61.3 | 86.4 | 76.7 | 73.9 | 78.6 | 82.6 | 95.1 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Deng, S.; Katoh, M.; Guan, Q.; Yin, N.; Li, M. Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies. Remote Sens. 2014, 6, 87-110. https://doi.org/10.3390/rs6010087
Deng S, Katoh M, Guan Q, Yin N, Li M. Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies. Remote Sensing. 2014; 6(1):87-110. https://doi.org/10.3390/rs6010087
Chicago/Turabian StyleDeng, Songqiu, Masato Katoh, Qingwei Guan, Na Yin, and Mingyang Li. 2014. "Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies" Remote Sensing 6, no. 1: 87-110. https://doi.org/10.3390/rs6010087