Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Pre-Analysis
2.3. Data Analysis
3. Results
3.1. Productivity Changes in Global OGFD Ecosystems
3.2. Climatic Predictors of Changes in the Productivity of Different OGFD Ecosystems
3.3. Climatic Predictors of Changes in OGFD Ecosystems’ Productivity in Different Regions
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
OGFD | Open, Grass- and Forb-Dominated ecosystems |
NDVI | Normalized Difference Vegetation Index |
IGBP | International Geosphere-Biosphere Programme |
CRU | Climatic Research Unit |
TS3.21 | Time-Series Version 3.21 |
NIR | Near-Infrared Reflectance |
GIMMS | Global Inventory Modeling and Mapping Studies |
NOAA | National Oceanic and Atmospheric Administration |
AVHRR | Advanced Very High Resolution Radiometer |
Pat | Annual Total Precipitation (mm) |
Pwm | Precipitation of Wettest Month (mm) |
Pdm | Precipitation of Driest Month (mm) |
Tam | Annual Mean Temperature (°C) |
Thm | Mean Temperature of Hottest Month (°C) |
Tcm | Mean Temperature of Coldest Month (°C) |
Io | Ombrothermic Index (Io = Pt/Ts, Pt is the total precipitation of those months whose average temperature is higher than 0 °C, and Ts is the sum of the monthly average temperature of those months whose average temperature is higher than 0 °C) |
References
- White, R.P.; Murray, S.; Rohweder, M. Grasslands: Executive Summary. In Pilot Analysis of Global Ecosystems: Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000; pp. 1–6. [Google Scholar]
- Suttie, J.M.; Reynolds, S.G.; Batello, C. (Eds.) Chapter 1 Introduction. In Grasslands of the World; Food & Agriculture Organization: Rame, Italy, 2005; pp. 1–18.
- Archer, S.; Schimel, D.S.; Holland, E.A. Mechanisms of shrubland expansion: Land use, climate or CO2? Clim. Chang. 1995, 29, 91–99. [Google Scholar] [CrossRef]
- Van Auken, O.W. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 197–215. [Google Scholar] [CrossRef]
- D’Odorico, P.; Okin, G.S.; Bestelmeyer, B.T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 2012, 5, 520–530. [Google Scholar] [CrossRef]
- Morgan, J.A.; LeCain, D.R.; Pendall, E.; Blumenthal, D.M.; Kimball, B.A.; Carrillo, Y.; Williams, D.G.; Heisler-White, J.; Dijkstra, F.A.; West, M. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 2011, 476, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Craine, J.M.; Nippert, J.B.; Elmore, A.J.; Skibbe, A.M.; Hutchinson, S.L.; Brunsell, N.A. Timing of climate variability and grassland productivity. Proc. Natl. Acad. Sci. USA 2012, 109, 3401–3405. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sherry, R.A.; Niu, S.; Li, D.; Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Chang. Biol. 2013, 19, 2753–2764. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B.; Barros, V.R.; Mach, K.; Mastrandrea, M.; van Aalst, M.; Adger, W.N.; Arent, D.J.; Barnett, J.; Betts, R.; Bilir, T.E.; et al. Technical summary. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 35–94. [Google Scholar]
- Li, F.Y.; Newton, P.C.; Lieffering, M. Testing simulations of intra- and inter-annual variation in the plant production response to elevated CO2 against measurements from an 11-year FACE experiment on grazed pasture. Glob. Chang. Biol. 2014, 20, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Nan, H.; Huntingford, C.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Peng, S.; Ahlstrom, A.; Canadell, J.G.; Cong, N.; et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 2014, 5, 5018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.Y.; Dijk, A.I.; McCabe, M.F.; Evans, J.P.; Jeu, R.A. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 2013, 22, 692–705. [Google Scholar] [CrossRef]
- Jong, R.; Schaepman, M.E.; Furrer, R.; Bruin, S.; Verburg, P.H. Spatial relationship between climatologies and changes in global vegetation activity. Glob. Chang. Biol. 2013, 19, 1953–1964. [Google Scholar] [CrossRef] [PubMed]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Ning, T.; Liu, W.; Lin, W.; Song, X. NDVI variation and its responses to climate change on the northern loess plateau of China from 1998 to 2012. Adv. Meteorol. 2015. [Google Scholar] [CrossRef]
- Breshears, D.D. The grassland-forest continuum: Trends in ecosystem properties for woody plant mosaics? Front. Ecol. Environ. 2006, 4, 96–104. [Google Scholar] [CrossRef]
- Whittaker, R.H. Communities and Ecosystems, 2nd ed.; Macmillan Publishing Co.: New York, NY, USA, 1975. [Google Scholar]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot Lond. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Guay, K.C.; Beck, P.S.; Berner, L.T.; Goetz, S.J.; Baccini, A.; Buermann, W. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Glob. Chang. Biol. 2014, 20, 3147–3158. [Google Scholar] [CrossRef] [PubMed]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, J.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Valencia-Barrera, R.; Comtois, P.; Fernández-González, D. Bioclimatic indices as a tool in pollen forecasting. Int. J. Biometeorol. 2002, 46, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xu, G.; Coops, N.C.; Ciais, P.; Innes, J.L.; Wang, G.; Myneni, R.B.; Wang, T.L.; Krzyzanowski, J.; Li, Q.L.; et al. Changes in vegetation photosynthetic activity trends across the Asia–Pacific region over the last three decades. Remote Sens. Environ. 2014, 144, 28–41. [Google Scholar] [CrossRef]
- Badreldin, N.; Sanchez-Azofeifa, A. Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the Coal Valley Mine, Alberta, Canada. Remote Sens. 2015, 7, 2832–2849. [Google Scholar] [CrossRef]
- Schmidt, M.; Klein, D.; Conrad, C.; Dech, S.; Paeth, H. On the relationship between vegetation and climate in tropical and northern Africa. Theor. Appl. Climatol. 2014, 115, 341–353. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Evans, J.P.; McCabe, M.F.; de Jeu, R.A.; van Dijk, A.I.; Dolman, A.J.; Saizen, I. Changing climate and overgrazing are decimating Mongolian steppes. PLoS ONE 2013, 8, e57599. [Google Scholar] [CrossRef] [PubMed]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Sistla, S.A.; Moore, J.C.; Simpson, R.T.; Gough, L.; Shaver, G.R.; Schimel, J.P. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 2013, 497, 615–618. [Google Scholar] [CrossRef] [PubMed]
- Fu, G.; Shen, Z.X.; Sun, W.; Zhong, Z.M.; Zhang, X.Z.; Zhou, Y.T. A meta-analysis of the effects of experimental warming on plant physiology and growth on the Tibetan Plateau. J. Plant. Growth Regul. 2014, 34, 57–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Q.; Dong, S.; Liu, S.; Wang, X.; Su, X.; Li, Y.; Tang, L.; Wu, X.; Zhao, H. Effects of grazing and climate warming on plant diversity, productivity and living state in the alpine rangelands and cultivated grasslands of the Qinghai-Tibetan Plateau. Rangel. J. 2014, 37, 57–65. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Li, Y.; Wan, Y.F.; Zhang, W.N.; Borjigdai, A. Challenges in disentangling the influence of climatic and socio-economic factors on alpine grassland ecosystems in the source area of Asian major rivers. Quatern. Int. 2013, 304, 126–132. [Google Scholar]
- Gao, Q.; Li, Y.; Wan, Y.; Qin, X.; Jiangcun, W.; Liu, Y. Dynamics of alpine grassland NPP and its response to climate change in Northern Tibet. Clim. Chang. 2009, 97, 515–528. [Google Scholar] [CrossRef]
- Gang, C.; Zhou, W.; Wang, Z.; Chen, Y.; Li, J.; Chen, J.; Qi, J.; Odeh, I.; Groisman, P.Y. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. J. Agron. Crop. Sci. 2014, 201, 57–68. [Google Scholar] [CrossRef]
- Bintanja, R.; Selten, F.M. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 2015, 509, 479–482. [Google Scholar]
- Fensholt, R.; Horion, S.; Tagesson, T.; Ehammer, A.; Ivits, E.; Rasmussen, K. Global-scale mapping of changes in ecosystem functioning from earth observation-based trends in total and recurrent vegetation. Glob. Ecol. Biogeogr. 2015, 24, 1003–1017. [Google Scholar] [CrossRef]
- Van Auken, O.W. Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manag. 2009, 90, 2931–2942. [Google Scholar] [CrossRef] [PubMed]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Xia, J.; Niu, S.; Ciais, P.; Janssens, I.; Chen, J.; Ammann, C.; Arain, A.; Blanken, P.D.; Cescatti, A.; Bonal, D.; et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. USA 2015, 112, 2788–2793. [Google Scholar] [CrossRef] [PubMed]
NDVI | Trends | Tundra | Grassland | Savannas | Global OGFD Ecosystems |
---|---|---|---|---|---|
Annual maximum | Very significantly decreased | 1.2 | 0.7 | 0.2 | 0.6 |
Significantly decreased | 1.8 | 0.9 | 0.5 | 0.9 | |
Insignificantly decreased | 25.9 | 15.0 | 9.1 | 15.0 | |
Insignificantly increased | 22.9 | 45.0 | 29.6 | 37.7 | |
Significantly increased | 9.0 | 14.7 | 10.8 | 12.8 | |
Very significantly increased | 39.2 | 23.7 | 49.8 | 33.0 | |
Annual mean | Very significantly decreased | 1.2 | 2.2 | 2.4 | 2.1 |
Significantly decreased | 1.4 | 2.8 | 2.5 | 2.5 | |
Insignificantly decreased | 23.4 | 24.0 | 23.6 | 23.8 | |
Insignificantly increased | 30.5 | 42.8 | 31.1 | 37.9 | |
Significantly increased | 11.8 | 10.2 | 9.4 | 10.2 | |
Very significantly increased | 31.7 | 18.0 | 31.0 | 23.5 |
Trends | Trends in Annual Maximum NDVI | Trends in Annual Mean NDVI | |||||
---|---|---|---|---|---|---|---|
Regions | Significantly Decreased | Insignificantly Changed | Significantly Increased | Significantly Decreased | Insignificantly Changed | Significantly Increased | |
Arctic | 2.7 | 39.8 | 57.5 | 1.9 | 51.0 | 47.1 | |
Southwestern USA | 0.5 | 67.3 | 32.2 | 0.4 | 63.5 | 36.1 | |
Mid-eastern South America | 0.5 | 30.3 | 69.2 | 3.5 | 58.8 | 37.7 | |
Central Africa | 0.8 | 43.4 | 55.8 | 6.6 | 62.5 | 30.9 | |
Central Eurasia | 0.3 | 55.8 | 43.9 | 4.9 | 67.1 | 28.0 | |
Mongolian Plateau | 5.1 | 87.3 | 7.6 | 11.4 | 79.0 | 9.6 | |
Qinghai-Tibetan Plateau | 0.7 | 79 | 20.3 | 1.0 | 70.3 | 28.7 | |
Oceania | 1.5 | 56.1 | 42.4 | 2.3 | 80.7 | 17.0 |
Grassland Types | Stepwise Regression Equations | R2 | F | p |
---|---|---|---|---|
Tundra | NDVImax = 0.484 + 0.644Tam | 0.415 | F(1,28) = 19.87 | <0.0001 |
NDVImean = 0.131 + 0.655Tam + 0.151Thm | 0.547 | F(2,27) = 16.30 | <0.0000 | |
Grassland | NDVImax = 0.473 + 0.484Pdm − 0.545Io + 0.329Pat | 0.500 | F(3,26) = 8.670 | <0.0004 |
NDVImean = 0.235 + 0.462Tam + 0.325Pdm + 0.304Pwm | 0.518 | F(3,26) = 9.331 | <0.0002 | |
Savannas | NDVImax = 0.435 + 0.243Thm +18.08Pat − 18.034Io − 3.317Tam | 0.531 | F(4,25) = 7.077 | <0.0006 |
NDVImean = 0.325 + 0.763Pat + 0.246Tcm − 0.237Pwm − 0.165Pdm | 0.477 | F(4,25) = 5.711 | <0.0020 |
Regions | Stepwise Regression Equations | R2 | F | p |
---|---|---|---|---|
the Arctic | NDVImax = 0.540 + 0.563Tam − 0.231Pat + 0.300Tcm − 0.200Pdm + 0.154Thm | 0.582 | F(5,24) = 6.686 | <0.0005 |
NDVImean = 0.123 + 0.714Tam | 0.509 | F(1,29) = 29.06 | <0.0001 | |
the southwestern USA | NDVImax = 0.490 + 0.838Pat − 0.582Io | 0.133 | F(2,27) = 2.071 | <0.1457 |
NDVImean = 0.157 + 0.721Tam + 0.489Pwm − 0.254Tcm +0.336Pat + 0.283Thm | 0.530 | F(5,24) = 5.414 | <0.0018 | |
mid-eastern South America | NDVImax = −0.202 + 0.603Tam + 0.297Io − 0.215Pdm | 0.346 | F(3,26) = 4.576 | <0.0011 |
NDVImean = 0.076 + 0.661 Pat + 0.196 Thm − 0.294Pwm + 0.244Tam | 0.333 | F(4,25) = 3.119 | <0.0328 | |
central Africa | NDVImax = 0.119 +0.448Pat + 0.355Thm − 0.198Pdm + 0.209 Pwm | 0.532 | F(4,25) = 7.115 | <0.0006 |
NDVImean = 0.452 + 0.619 Pat + 0.253Pwm − 0.141Pdm – 0.135Thm | 0.662 | F(4,25) = 12.26 | <0.0000 | |
central Eurasia | NDVImax = 0.329 + 0.875Pat + 0.351Pwm − 0.596Io | 0.436 | F(3,26) = 6.701 | <0.0017 |
NDVImean = 0.229 + 0.275Pwm+ 0.247Pat | 0.188 | F(2,27) = 3.133 | <0.0598 | |
the Mongolian Plateau | NDVImax = 0.353 + 0.5748Pwm − 0.394Tcm − 0.302Pdm + 0.232Thm | 0.552 | F(4,25) = 7.695 | <0.0004 |
NDVImean = 0.184 + 0.700Pwm + 0.468Thm − 0.285Pdm − 0.229Tcm | 0.555 | F(4,25) = 7.797 | <0.0003 | |
the Qinghai-Tibetan Plateau | NDVImax = 0.368 + 0.427Thm | 0.182 | F(1,28) = 6.246 | <0.0186 |
NDVImean = 0.241 + 0.718Tam – 0.286Pat + 0.258Thm − 0.189Tcm | 0.536 | F(4,25) = 7.210 | <0.0005 | |
Oceania | NDVImax = 0.795 + 0.409Io − 0.263Thm + 0.225Pwm | 0.584 | F(3,26) = 12.16 | <0.0000 |
NDVImean = 0.851 + 0.429Io − 0.532Tam + 0.345Tcm | 0.584 | F(3,26) = 12.17 | <0.0000 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Q.; Schwartz, M.W.; Zhu, W.; Wan, Y.; Qin, X.; Ma, X.; Liu, S.; Williamson, M.A.; Peters, C.B.; Li, Y. Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors. Remote Sens. 2016, 8, 384. https://doi.org/10.3390/rs8050384
Gao Q, Schwartz MW, Zhu W, Wan Y, Qin X, Ma X, Liu S, Williamson MA, Peters CB, Li Y. Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors. Remote Sensing. 2016; 8(5):384. https://doi.org/10.3390/rs8050384
Chicago/Turabian StyleGao, Qingzhu, Mark W. Schwartz, Wenquan Zhu, Yunfan Wan, Xiaobo Qin, Xin Ma, Shuo Liu, Matthew A. Williamson, Casey B. Peters, and Yue Li. 2016. "Changes in Global Grassland Productivity during 1982 to 2011 Attributable to Climatic Factors" Remote Sensing 8, no. 5: 384. https://doi.org/10.3390/rs8050384