In Situ/Remote Sensing Integration to Assess Forest Health—A Review
Abstract
:1. Forest Health and Identification Using Remote Sensing
2. In Situ Data Sampling in Forestry
3. Satellite Remote Sensing of Forest Health Boundary Conditions
4. Integration Aspects of In Situ/Remote Sensing Data
- -
- data continuity (i.e., providing min/max availability of data information products) for the implementation of standardized workflows and products,
- -
- multi-temporal analyses on a weekly, monthly, seasonal and annual basis for the frequent updating of thematic maps,
- -
- inter-comparability of remote-sensing data from different sensors to close gaps in time series, i.e., by translation to a standard unit (spectrally and spatially),
- -
- intermediated information products for event-based irregular needs (i.e., higher observation frequency during drought periods, assessment of large-scale wind blow events).
- -
- Clear communication of limitations (i.e., remote sensing cannot measure vegetation vitality or measure soil moisture in the vadose zone), but rather focuses on satellite remote sensing observation strengths (i.e., retrieval of spatio-temporal trends) for an operational use (i.e., sustainable wood production and environmental boundary conditions).
- -
- In terms of the spatially and temporally integrated remotely sensed “measurement”, remote sensing sensors observe physical signal patterns that are linked to natural processes (i.e., evapotranspiration, vadose zone water fluxes) and data assimilation concepts to run quantitative physically-based models, which are very important because of the available multidisciplinary data [69].
- -
- Physical remote sensing observations are difficult to translate into actual forest measurements because it is difficult to get a precise inversion into the forest parameter of choice. Therefore, the remote sensing measurement can be used i) as an indicator for the forest parameter or ii) as input into a process model used by an operator to simulate or estimate the forest parameter of choice [70].
- -
- The mismatch between in situ point or small-scale plot measurements and remotely-sensed large-scale signals plays an important role for the final application and choice of retrieval method.
- -
- parameter sensitivity (i.e., leaf angle distribution, foliar pigments) changes with the spatial observation scale and can be modeled using radiative transfer models for better understanding the remotely-sensed data and modifying retrieval algorithms for specific sensor data.
- -
- the effect of up-and downscaling of spectro-radiometer data varies with the heterogeneity of the vegetation cover and transfer functions should take into consideration vegetation boundary conditions i.e., soil moisture properties [71].
- -
- as sub-pixel heterogeneity of soil and vegetation parameters has control over processes (i.e., evapotranspiration, thermal emissions) in situ sampling design needs to take into consideration the spatial footprint of relevant remotely-sensed data (i.e., 5 m × 5 m multi-spectral data from rapideye or 30 m × 30 m hyperspectral data from enmap or 60 m × 60 m swir data from sentinel-2).
- -
- the choice of in situ sampling locations and measurement density in time and space can be supported by analyzing the available time series of remote sensing image data, topographic information and meteorological time series. the quantified spatio-temporal stationarity of the different observations deliver information for the design of in situ sampling to reduce the mismatch between observation scales.
4.1. Methods and Implementation Criteria
- -
- Technological innovations on wireless terrestrial and underground sensor networks can play an important role in managing forest resources by collecting continuous data of soil, vegetation and atmospheric conditions. existing and new forest sampling locations can be equipped (i.e., with temperature and soil moisture sensors) and the temporal and spatial statistical representativeness of the in situ information will increase. The first step is to parameterize plot-specific statistical functions to estimate i.e., evapotranspiration or soil moisture in the vadose zone [93] and to link these to remote sensing based vegetation data for “water state” mapping.
- -
- Phenological ground networks will provide frequent information on leaf and needle conditions for monitoring changes in tree growth, phenology (start, middle and end of the growing season) and provide valuable data for the analyses of tree species conditions under changing climatological and hydrological conditions [76].
- -
- Terrestrial and UAV (Unmanned Airborne Vehicle) based sensor innovations can provide information on the structural dynamics of forest ecosystems and deliver input data for process models [94].
- -
- Multi-dimensional spatial data sets available from new satellite missions can be used to complement each other and compensate for limited local in situ data.
- -
- This rapidly increasing observation database provided by satellite and in situ observations can be used to identify recently unknown spatio-temporal process patterns, feedbacks and physically-based process simulations may be modified to provide scenarios for sustainable forest management under changing environmental conditions.
- -
- The implementation of digital forest information systems, the growing demand of geospatial information and the increasing application of remote-sensing data by forest professionals is a big step forward to bridge the gap between science and practical application [95].
4.2. Standards for Remote-Sensing Based Products
- -
- to increase comparability, the exchange and consistence of data from different forest regions and dates,
- -
- to provide standard data formats for sustainable information management within digital forest information systems,
- -
- to make information reproducible,
- -
- to develop legal commercial products that stand up to testing from decision makers and policy.
- -
- spatial resolution/ground pixel size,
- -
- spectral signal characteristics (i.e., for optical remote sensing data) such as the central wavelength and band width or SAR backscatter and polarization and processing level,
- -
- processing level and physical units,
- -
- time and frequency of observation for multi-temporal processing,
- -
- statistical representativeness of applied in situ data,
- -
- Thematic representativeness of applied in situ data.
5. Conclusions and Outlook
- -
- information- and knowledge transfer (benefits and limitations) about today’s and future remote sensing technologies for potential end users, students and trainees,
- -
- professional and frequent analyses on the demands, needs and current information deficits in forests on different levels of forest management and decision making in Europe,
- -
- an analysis of the criteria on standardizing product requirements in remote sensing (i.e., requirements on physically-based reproducibility) and the forest user community (i.e., needs on uncertainty levels of information products),
- -
- the provision of remote-sensing data free of charge or at certain special rates if used for the operational management of ecosystems which provide a wide range of ecosystem services.
- -
- further development of best practice workflows and products that integrate remote-sensing data to complement existing data and services,
- -
- the development of methods to retrieve information from multi-source remote sensing data to make use of synergies and complementarities and handle gaps in time series and areas,
- -
- the further development of the data assimilation concept to utilize multi-source remote-sensing data for the prediction of forest health indicators using environmental models (i.e., growth models),
- -
- research to provide evidence of the concept on the integration of terrestrial sensor network data (in situ) and satellite remote-sensing data in forestry as a basis for standardized information products based on remote-sensing data.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Milad, M.; Schaich, H.; Bürgi, M.; Konold, W. Climate change and nature conservation in Central European forests: A review of consequences, concepts and challenges. For. Ecol. Manag. 2011, 261, 829–843. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Seidl, R.; Müller, J.; Hothorn, T.; Bässler, C.; Heurich, M.; Kautz, M. Small beetle, large-scale drivers: How regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl. Ecol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Masek, J.G.; Hayes, D.J.; Joseph Hughes, M.; Healey, S.P.; Turner, D.P. The role of remote sensing in process-scaling studies of managed forest ecosystems. For. Ecol. Manag. 2015, 355, 109–123. [Google Scholar] [CrossRef]
- McDowell, N.G.; Coops, N.C.; Beck, P.S.A.; Chambers, J.Q.; Gangodagamage, C.; Hicke, J.A.; Huang, C.; Kennedy, R.; Krofcheck, D.J.; Litvak, M.; et al. Global satellite monitoring of climate-induced vegetation disturbances. Trends Plant Sci. 2015, 20, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 2008, 112, 1982–1999. [Google Scholar] [CrossRef]
- Halme, M.; Tomppo, E. Improving the accuracy of multisource forest inventory estimates to reducing plot location error—A multicriteria approach. Remote Sens. Environ. 2001, 78, 321–327. [Google Scholar] [CrossRef]
- Wang, J.; Sammis, T.W.; Gutschick, V.P.; Gebremichael, M.; Dennis, S.O.; Harrison, R.E. Review of Satellite Remote Sensing Use in Forest Health Studies. Open Geogr. J. 2010, 3, 28–42. [Google Scholar] [CrossRef]
- Mäkelä, H.; Hirvelä, H.; Nuutinen, T.; Kärkkäinen, L. Estimating forest data for analyses of forest production and utilization possibilities at local level by means of multi-source National Forest Inventory. For. Ecol. Manag. 2011, 262, 1345–1359. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Goetz, A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.; Younis, M.; Lopez-Dekker, P.; Huber, S.; Villano, M.; Pardini, M.; Eineder, M.; et al. Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth’s Surface. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–23. [Google Scholar] [CrossRef]
- Barrett, F.; McRoberts, R.E.; Tomppo, E.; Cienciala, E.; Waser, L.T. A questionnaire-based review of the operational use of remotely sensed data by national forest inventories. Remote Sens. Environ. 2016, 174, 279–289. [Google Scholar] [CrossRef]
- Kuenzer, C.; Ottinger, M.; Wegmann, M.; Guo, H.; Wang, C.; Zhang, J.; Dech, S.; Wikelski, M. Earth observation satellite sensors for biodiversity monitoring: Potentials and bottlenecks. Int. J. Remote Sens. 2014, 35, 6599–6647. [Google Scholar] [CrossRef]
- Petrou, Z.I.; Manakos, I.; Stathaki, T. Remote sensing for biodiversity monitoring: A review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodivers. Conserv. 2015, 24, 2333–2363. [Google Scholar] [CrossRef]
- Nyström, M.; Lindgren, N.; Wallerman, J.; Grafström, A.; Muszta, A.; Nyström, K.; Bohlin, J.; Willen, E.; Fransson, J.E.S.; Ehlers, S.; et al. Data assimilation in forest inventory: First empirical results. Forests 2015, 6, 4540–4557. [Google Scholar] [CrossRef]
- Nabuurs, G.; Delacote, P.; Ellison, D.; Hanewinkel, M.; Lindner, M.; Nesbit, M.; Ollikainen, M.; Savaresi, A. A New Role for Forests and the Forest Sector in the EU Post-2020 Climate Targets; European Forest Institute: Joensuu, Finland, 2015. [Google Scholar]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O.; Finley, A.O.; Heikkinen, J. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sens. Environ. 2007, 111, 466–480. [Google Scholar] [CrossRef]
- Katila, M.; Tomppo, E. Selecting estimation parameters for the Finnish multisource National Forest Inventory. Remote Sens. Environ. 2001, 76, 16–32. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Ghosh, A.; Joshi, P.K.; Koch, B. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sens. Environ. 2014, 140, 533–548. [Google Scholar] [CrossRef]
- Kandler, G. The design of the second German national forest inventory. In Proceedings of the Eighth Annual Forest Inventory and Analysis Symposium, Monterey, CA, USA, 16–19 October 2006; CA. Gen. Tech. Report WO-79. McRoberts, R.E., Reams, G.A., van Deusen, P.C., McWilliams, W.H., Eds.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2009; pp. 19–24. [Google Scholar]
- Matyssek, R.; Wieser, G.; Calfapietra, C.; de Vries, W.; Dizengremel, P.; Ernst, D.; Jolivet, Y.; Mikkelsen, T.N.; Mohren, G.M.J.; le Thiec, D.; et al. Forests under climate change and air pollution: Gaps in understanding and future directions for research. Environ. Pollut. 2012, 160, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez Galán, C.; Rodríguez-Pérez, J.R.; Martínez Torres, J.; García Nieto, P.J. Analysis of the influence of forest environments on the accuracy of GPS measurements by using genetic algorithms. Math. Comput. Model. 2011, 54, 1829–1834. [Google Scholar] [CrossRef]
- Mannschatz, T.; Pflug, B.; Borg, E.; Feger, K.-H.; Dietrich, P. Uncertainties of LAI estimation from satellite imaging due to atmospheric correction. Remote Sens. Environ. 2014, 153, 24–39. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Tang, J.; Xue, Y.; Yu, T.; Guan, Y. Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS. Remote Sens. Environ. 2005, 94, 327–334. [Google Scholar] [CrossRef]
- Sinyuk, A.; Dubovik, O.; Holben, B.; Eck, T.F.; Breon, F.-M.; Martonchik, J.; Kahn, R.; Diner, D.J.; Vermote, E.F.; Roger, J.-C.; et al. Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. Remote Sens. Environ. 2007, 107, 90–108. [Google Scholar] [CrossRef]
- Pause, M.; Lausch, A.; Bernhardt, M.; Hacker, J.; Schulz, K. Improving Soil Moisture Retrieval from Airborne L-band Radiometer Data by Considering Spatially Varying Roughness. Can. J. Remote Sens. 2014, 40, 15–25. [Google Scholar] [CrossRef]
- Pause, M.; Schulz, K.; Zacharias, S.; Lausch, A. Near-surface soil moisture estimation by combining airborne L-band brightness temperature observations and imaging hyperspectral data at the field scale. J. Appl. Remote Sens. 2012, 6, 1–13. [Google Scholar]
- Doxani, G.; Mitraka, Z.; Gascon, F.; Goryl, P.; Bojkov, B.R. A Spectral Unmixing Model for the Integration of Multi-Sensor Imagery: A Tool to Generate Consistent Time Series Data. Remote Sens. 2015, 7, 14000–14018. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.E.; Müller, J.; Tharani, A.; Dech, S.; Heurich, M. Forest inventories by LiDAR data: A comparison of single tree segmentation and metric-based methods for inventories of a heterogeneous temperate forest. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 162–174. [Google Scholar] [CrossRef]
- Tanase, M.A.; Panciera, R.; Lowell, K.; Aponte, C.; Hacker, J.M.; Walker, J.P. Forest Biomass Estimation at High Spatial Resolution: Radar Versus Lidar Sensors. IEEE Geosci. Remote Sens. Lett. 2014, 11, 711–715. [Google Scholar] [CrossRef]
- Karila, K.; Vastaranta, M.; Karjalainen, M.; Kaasalainen, S. Tandem-X interferometry in the prediction of forest inventory attributes in managed boreal forests. Remote Sens. Environ. 2015, 159, 259–268. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Kustas, W.P.; Houborg, R.; Starks, P.J.; Agam, N. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Moran, M.S. Thermal infrared measurement as an indicator of plant ecosystem health. Therm. Remote Sens. Land Surf. Process. 2003, 257–282. [Google Scholar] [CrossRef]
- Elatawneh, A.; Wallner, A.; Manakos, I.; Schneider, T.; Knoke, T. Forest Cover Database Updates Using Multi-Seasonal RapidEye Data—Storm Event Assessment in the Bavarian Forest National Park. Forests 2014, 5, 1284–1303. [Google Scholar] [CrossRef]
- Wallner, A.; Elatawneh, A.; Schneider, T.; Knoke, T. Estimation of forest structural information using RapidEye satellite data. Forestry 2014. [Google Scholar] [CrossRef]
- Ortiz, S.; Breidenbach, J.; Kändler, G. Early Detection of Bark Beetle Green Attack Using TerraSAR-X and RapidEye Data. Remote Sens. 2013, 5, 1912–1931. [Google Scholar] [CrossRef]
- Pu, R.; Cheng, J. Mapping forest leaf area index using reflectance and textural information derived from WorldView-2 imagery in a mixed natural forest area in Florida, US. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 11–23. [Google Scholar] [CrossRef]
- Immitzer, M.; Stepper, C.; Böck, S.; Straub, C.; Atzberger, C. Use of WorldView-2 stereo imagery and National Forest Inventory data for wall-to-wall mapping of growing stock. For. Ecol. Manag. 2016, 359, 232–246. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mingquan, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Climate in Terrestrial Ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [PubMed]
- Santoro, M.; Askne, J.; Smith, G.; Fransson, J.E.S. Stem volume retrieval in boreal forests from ERS-1/2 interferometry. Remote Sens. Environ. 2002, 81, 19–35. [Google Scholar] [CrossRef]
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef]
- Drusch, M.; del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Clasen, A.; Somers, B.; Pipkins, K.; Tits, L.; Segl, K.; Brell, M.; Kleinschmit, B.; Spengler, D.; Lausch, A.; Förster, M. Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale. Remote Sens. 2015, 7, 15361–15387. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Vuolo, F.; Dash, J.; Curran, P.J.; Lajas, D.; Kwiatkowska, E. Methodologies and uncertainties in the use of the terrestrial chlorophyll index for the sentinel-3 mission. Remote Sens. 2012, 4, 1112–1133. [Google Scholar] [CrossRef]
- Sun, L.; Schulz, K. The Improvement of Land Cover Classification by Thermal Remote Sensing. Remote Sens. 2015, 7, 8368–8390. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, R.; Atzberger, C.; Li, F.; Loiselle, S.; Luo, J. Estimating Forest fAPAR from Multispectral Landsat-8 Data Using the Invertible Forest Reflectance Model INFORM. Remote Sens. 2015, 7, 7425–7446. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Bruscantini, C.A.; Konings, A.G.; Narvekar, P.; McColl, K.A.; Entekhabi, D. L-band radar soil moisture retrieval without ancillary information. IEEE Trans. Geosci. Remote Sens. 2015, 8, 5526–5540. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Major, G.R. Impact of NASA EOS Instrument Data on the Scientific Literature: 10 Years of Published Research Results from Terra, Aqua, and Aura. Issues Sci. Technol. Librariansh. 2011, 4. [Google Scholar] [CrossRef]
- Soudani, K.; le Maire, G.; Dufrêne, E.; François, C.; Delpierre, N.; Ulrich, E.; Cecchini, S. Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens. Environ. 2008, 112, 2643–2655. [Google Scholar] [CrossRef]
- Solberg, S.; Riegler, G.; Nonin, P. Estimating Forest Biomass From TerraSAR-X Stripmap Radargrammetrye. IEEE Trans. Geosci. Remote Sens. 2015, 53, 154–161. [Google Scholar] [CrossRef]
- Krieger, G.; Zink, M.; Bachmann, M.; Bräutigam, B.; Schulze, D.; Martone, M.; Rizzoli, P.; Steinbrecher, U.; Walter Antony, J.; de Zan, F.; et al. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronaut. 2013, 89, 83–98. [Google Scholar] [CrossRef]
- Boesch, H.; Baker, D.; Connor, B.; Crisp, D.; Miller, C. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission. Remote Sens. 2011, 3, 270–304. [Google Scholar] [CrossRef]
- Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al. The EnMAP Spaceborne Imaging Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830–8857. [Google Scholar] [CrossRef]
- Kraft, S.; del Bello, U.; Bouvet, M.; Drusch, M. FLEX: ESA’S Earth Explorer 8 Candidate Mission. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 7125–7128.
- Joiner, J.; Yoshida, Y.; Vasilkov, A.P.; Schaefer, K.; Jung, M.; Guanter, L.; Zhang, Y.; Garrity, S.; Middleton, E.M.; Huemmrich, K.F.; et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. Remote Sens. Environ. 2014, 152, 375–391. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Ho Tong Minh, D.; le Toan, T.; Rocca, F.; Tebaldini, S.; Villard, L.; Rejou-Mechain, M.; Phillips, O.L.; Feldpausch, T.R.; Dubois-Fernandez, P.; Scipal, K.; et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sens. Environ. 2016, 175, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Tanase, M.A.; Panciera, R.; Lowell, K.; Tian, S.Y.; Garcia-Martin, A.; Walker, J.P. Sensitivity of L-Band Radar Backscatter to Forest Biomass in Semiarid Environments: A Comparative Analysis of Parametric and Nonparametric Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4671–4685. [Google Scholar] [CrossRef]
- Boesch, H.; Vogel, L.; Bovensmann, H.; Buchwitz, M.; Reuter, M. Characterization of CO2 and CH4 Sunglint Retrievals from CarbonSat. Geophys. Res. Abstr. 2014, 16, 3024. [Google Scholar]
- Schaepman, M.E. Spectrodirectional remote sensing: From pixels to processes. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 204–223. [Google Scholar] [CrossRef] [Green Version]
- Laurent, V.C.E.; Verhoef, W.; Clevers, J.G.P.W.; Schaepman, M.E. Inversion of a coupled canopy-atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study. Remote Sens. Environ. 2011, 115, 2603–2612. [Google Scholar] [CrossRef]
- Lausch, A.; Pause, M.; Doktor, D.; Preidl, S.; Schulz, K. Monitoring and assessing of landscape heterogeneity at different scales. Environ. Monit. Assess. 2013, 185, 9419–9434. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, G.; Ulander, L.M.H.; Fransson, J.E.S.; Holmgren, J.; le Toan, T. L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sens. Environ. 2011, 115, 2874–2886. [Google Scholar] [CrossRef]
- Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.; Heiden, U.; Heurich, M. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 66–76. [Google Scholar] [CrossRef]
- Wang, Z.; Skidmore, A.K.; Darvishzadeh, R.; Heiden, U.; Heurich, M.; Wang, T. Leaf Nitrogen Content Indirectly Estimated by Leaf Traits Derived From the PROSPECT Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Soudani, K.; Hmimina, G.; Delpierre, N.; Pontailler, J.Y.; Aubinet, M.; Bonal, D.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; et al. Ground-based Network of NDVI measurements for tracking temporal dynamics of canopy structure and vegetation phenology in different biomes. Remote Sens. Environ. 2012, 123, 234–245. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C.; Ustin, S.L. PROSPECT+SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006, 225, 378–390. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. [Google Scholar] [CrossRef]
- Rahman, M.M.; Csaplovics, E.; Koch, B. Satellite estimation of forest carbon using regression models. Int. J. Remote Sens. 2008, 29, 6917–6936. [Google Scholar] [CrossRef]
- De Rosnay, P.; Drusch, M.; Wigneron, J.-P.; Holmes, T.; Balsamo, G.; Boone, A.; Rudiger, C.; Calvet, J.-C.; Kerr, Y. Soil Moisture Remote Sensing for Numerical Weather Prediction: L-Band and C-Band Emission Modeling Over Land Surfaces, the Community Microwave Emission Model (CMEM). In Proceedings of the IGARRS IEEE International Geoscience & Remote Sensing Symposium, Boston, FL, USA, 6–11 July 2008.
- De Rosnay, P.; Drusch, M.; Boone, A.; Balsamo, G.; Decharme, B.; Harris, P.; Kerr, Y.; Pellarin, T.; Polcher, J.; Wigneron, J.-P. AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res. 2009, 114, D05108. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Hajnsek, I.; Papathanassiou, K.P.; Bronstert, A. Soil moisture estimation using a multi-angular modified three component polarimetric decomposition. IEEE Int. 2009, 5, 5–8. [Google Scholar]
- Jia, L.; Li, Z.; Menenti, M.; Pasteur, U.L.; Brant, B.S. Modeling of TIR radiative transfer in the soil—Vegetation—Atmosphere system: Sensitivity to soil water content and LAI and simulation of complex scenes. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 39–41.
- Minacapilli, M.; Ciraolo, G.; Iovino, M. Thermal Inertia Modeling for Soil Surface Water Content Estimation: A Laboratory Experiment. Soil Sci. Soc. Am. J. 2012, 76, 92–100. [Google Scholar] [CrossRef]
- Lausch, A.; Schmidt, A.; Tischendorf, L. Data mining and linked open data—New perspectives for data analysis in environmental research. Ecol. Model. 2015, 295, 5–17. [Google Scholar] [CrossRef]
- Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, H.J.; Gwillym-Margianto, S.; Salbach, C. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manag. 2013, 308, 76–89. [Google Scholar] [CrossRef]
- Trombetti, M.; Riano, D.; Rubio, M.; Cheng, Y.; Ustin, S. Multi-temporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA☆. Remote Sens. Environ. 2008, 112, 203–215. [Google Scholar] [CrossRef]
- Doktor, D.; Lausch, A.; Spengler, D.; Thurner, M. Extraction of Plant Physiological Status from Hyperspectral Signatures Using Machine Learning Methods. Remote Sens. 2014, 6, 12247–12274. [Google Scholar] [CrossRef]
- Kimes, D.S.; Ranson, K.J.; Sun, G. Inversion of a forest backscatter model using neural networks. Int. J. Remote Sens. 1997, 18, 2181–2199. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; Vanderborght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Eitel, J.U.H.; Vierling, L.A.; Magney, T.S. A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics. Agric. For. Meteorol. 2013, 180, 86–96. [Google Scholar] [CrossRef]
- Felbermeier, B.; Hahn, A.; Schneider, T.; München, T.U.; Management, F. Study on User Requirements for Remote Sensing Applications in Forestry; Copernicus Publications: Göttingen, Germany, 2010; Volume 38, pp. 210–212. [Google Scholar]
- Coopersmith, E.J.; Cosh, M.H.; Daughtry, C.S. T. Field-scale moisture estimates using COSMOS sensors: A validation study with temporary networks and Leaf-Area-Indices. J. Hydrol. 2014, 519, 637–643. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Stuntebeck, E.P. Wireless underground sensor networks: Research challenges. Ad Hoc Netw. 2006, 4, 669–686. [Google Scholar] [CrossRef]
- Döner, Ç.; Şimşek, G.; Yıldırım, K.S.; Kantarcı, A. Forest Fire Detection with Wireless Sensor Networks. Available online: http://artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/6788 (accessed on 1 June 2016).
- Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett. 2008, 35, L21402. [Google Scholar] [CrossRef]
- Baatz, R.; Bogena, H.R.; Hendricks Franssen, H.-J.; Huisman, J.A.; Montzka, C.; Vereecken, H. An empirical vegetation correction for soil water content quantification using cosmic ray probes. Water Resour. Res. 2015, 51, 2030–2046. [Google Scholar] [CrossRef]
Criterion | Indicators |
---|---|
Maintenance and Appropriate Enhancement of Forest Resources and their Contribution to Global Carbon Cycles |
|
Maintenance of forest ecosystem health and vitality |
|
Maintenance and encouragement of productive functions of forests |
|
Maintenance, conservation and appropriate enhancement of biological diversity in forest ecosystems |
|
Maintenance and appropriate enhancement of protective functions in forest management (notably soil and water) |
|
Maintenance of other socio-economic functions and conditions |
|
Parameter | Traditional Methods and Measurement Standard in Forestry | |
---|---|---|
vegetation data | tree species and number of trees * | manual counting in defined plots |
tree height | geometric principle (i.e., Kramer’s Dendrometer) trigonometric principle (i.e., Blume-Leiss altimeter) | |
tree crown diameter | average crown spread, spoke method, azimuth method, polygonal method, laser method | |
tree crown density | physical direct measurement taken by tree climbers, and modeling of limb and branch volume | |
tree diameter at breast height * | measured at breast height at 130 cm above the average soil level using a tree caliper or a diameter tape | |
basal area per hectare | Bitterlich sampling | |
phenological state * | visual assessment by expert | |
leaf and needle color and state * | visual assessment by expert | |
social role and stand structure * | visual assessment by expert considering tree neighborhood to assess light, nutrient and water concurrence | |
Deadwood * | visual assessment by expert: upright/lying, quantity, decomposition | |
ground vegetation and shrubs layer * | visual assessment by expert, vertical vegetation species type and distribution and vegetation density covering soil | |
soil and ground data | litter (L) and humus (O) layer * | visual assessment of litter and humus layer thickness, composition, decomposition |
humus form (i.e., raw humus, model, mull) * | visual assessment of the upper soil layers (L, O, A) identification of indicator species of ground vegetation | |
soil horizon: A (surface soil), B (subsoil), C, E,G, etc. | visual assessment by destructive soil sampling, i.e., using spade and soil auger | |
soil type * | i.e., sand, silt, clay, loam visual assessment by expert (finger test) | |
soil classification | i.e., brown soil, podzol classification of soils on the basis of characteristic combinations of soil horizons and soil types | |
soil moisture | visual assessment of soil consistence and water discharge | |
plant available water content | derivation from soil type (grain size), stratification, humus content | |
groundwater and backwater | measurement of water level below surface estimation of variation amplitude, drying out period, evaporation potential due to relief structure | |
local relief | estimation of slope inclination, slope aspect, curvature | |
soil chemistry | estimation of carbonate content by means of the intensity of CO2 emissions after reacting with HCl | |
pH: pH test strips | ||
C/N ratio for A horizon | ||
nutritional element for plants: laboratory analysis | ||
other data, no regular sampling, experimental and scientific purpose | geology and geomorphology | campaign specific sampling |
foliar chemistry | campaign specific sampling | |
age class distribution | dendrochronology by core sampling from living tree using a borer | |
epiphytic lichens | campaign specific sampling | |
atmospheric deposition | campaign specific sampling | |
ambient air quality | campaign specific sampling | |
meteorology | i.e., measurement of precipitation, air temperature, wind speed, wind direction, global radiation, flux measurements, humidity; sampled by experimental/scientific test site monitoring, flux net tower station, German weather forecast monitoring | |
soil moisture | vertical soil hydraulic properties observed with long-term lysimeter experiments |
Mission Name/Organization | Launch Date/Revisit Time for Europe | Type of Sensor/Number of Observations/Pixel Size | Relevance to forests | Selected Scientific References Relevant to Forestry |
---|---|---|---|---|
RapidEye */PlanetLabs | 2008/1 day | Multi-spectral push broom imager/5 spectral bands/5 m × 5 m | - qualitative and quantitative vegetation | [37,38,39] |
information, i.e., species distribution, phenology, stand height, forest biomass, | ||||
WorldView-2,3 */Ball Aerospace & Technologies Corporation, fully commercial | 2009 and 2014/1 day | Multi-spectral push broom imager/9 spectral bands/0.5 m–1.8 m | [40,41] | |
- indirect soil information, | ||||
- spatial and temporal dynamics through high revisit time | ||||
Sentinel-1A */B * | 2014 and 2015/2 days | C-band SAR/5 m × 20 m | - qualitative and quantitative vegetation structure i.e., biomass, stem volume, deforestation, soil moisture, land deformation | [42,43,44,45] |
two-satellite configuration/ESA | ||||
Sentinel-2A */B ** | 2015 and 2016 5 days | Multi-spectral imaging spectrometer/12 spectral bands/10 m (visible and VNIR), 20 m (VNIR, SWIR), 60 m (SWIR) | - qualitative and quantitative vegetation information (i.e., species distribution, phenology, LAI, vegetation water content) | [46,47,48] |
two-satellite configuration/ESA | ||||
- soil color and moisture information | ||||
- spatial and temporal dynamics | ||||
Sentinel-3A*/B** | 2016/2017 4 days | - Land Surface Temperature Radiometer (SLSTR)/9 bands/500 m–1 km, | - active fire monitoring and burn severity, | [49,50,51] |
two-satellite configuration/ESA | - land temperature, | |||
- Ocean and Land Color Instrument (OLCI)/21 bands/300 m–1.3 km, | - evapotranspiration, | |||
- vegetation state, vegetation monitoring, | ||||
- dual-frequency (Ku and C band) advanced Synthetic Aperture Radar Altimeter (SRAL)/60 m | - species classification, soil moisture | |||
Landsat 8 */NASA & USGS | 2013/16 days | - OLI- Imaging multiband spectrometer & TIR multi band thermal infrared radiometer/15 m (PAN), 30 m (VNIR), 100 m (TIR) | Qualitative and quantitative vegetation (i.e., species distribution, phenology) and soil and information | [52,53] |
SMAP * | 2015/1–2 days | - L-band SAR SMAP SAR is not operating! | land surface soil moisture | [54,55] |
soil moisture active passive/NASA | ||||
- L-band radiometer 30 km | ||||
SMOS * | 2009/1–2 days | L-band radiometer 40 km | land surface at continental and global scale | [56] |
soil moisture and ocean salinity/ESA | ||||
Terra MODIS */NASA | 1999/16 days | MODIS: Moderate imaging spectrometer/250 m, 500 m | biological and physical processes, land surface temperatures, forest fires and detection of burnt areas | [57,58] |
TerraSAR-X */DLR and Airbus Space and Defence | 2007/2–3 days | X-band SAR/1 m/3 m/16 m | Biomass | [59] |
Geometric and volumetric information and dynamics | ||||
TanDEM-X */DLR and Airbus Space and Defence | 2010/3 years for global elevation model | X-band SAR/12 m (HRTI-3 DEM) | - Digital elevation measurements, biomass | [34,60] |
- flying in close formation with TerraSAR-X to achieve cross-track interferograms | ||||
OCO-2 */NASA | 2014/16 days | Spectrometer/spatial resolution not specified | column-averaged carbon dioxide dry air mole fraction (XCO2) on regional scales, detection and monitoring of sinks and sources | [61] |
EnMAP ** | 2019/4 days | Imaging hyperspectral spectrometer 420 nm–2450 nm, and >200 spectral bands, 30 m | - soil information i.e., soil color, minerals, moisture) | [48,62] |
(Environmental Mapping and Analysis Program)/BMBF & BMWi Germany | ||||
- qualitative and quantitative forest information i.e., species distribution, phenology, foliar chemistry | ||||
FLEX ** | 2022/N.N. | Imaging ultraspectral spectrometer—“Fluorescence Imaging Spectrometer" FLORIS 300 m | vegetation chlorophyll fluorescence | [63,64,65] |
(Fluorescence Explorer) in tandem with Sentinel-3/ESA | Photosynthetic activity | |||
Plant vitality and plant-atmospheric carbon exchange | ||||
BIOMASS ** | scheduled launch 2020/N.N. | P-band SAR 200 m | Forest biomass monitoring, forest carbon stock | [66] and see ESA Earth Explorer 7: reports for mission selection SP-1324 |
ESA | ||||
TANDEM-L *** | N.N./N.N. | two twin L-band SAR | vertical forest structure information, forest height, forest biomass, soil moisture | [12,67] |
DLR | ||||
CarbonSAT *** | N.N./N.N. | Carbon dioxide, methane | [68] | |
ESA | ||||
ECOSTRESS *** | N.N./N.N. | Multi band thermal infrared radiometer | Evapotranspiration, plant-water dynamics | visit: http://science.nasa.gov/missions/ecostress/ |
NASA | ||||
GEDI *** | N.N./N.N. | LIDAR | Forest canopy structure and its spatial and temporal dynamics, focus on tropical and temperate forests (coverage between 50° N and 50° S) | visit: http://science.nasa.gov/missions/gedi/ |
(Global Ecosystem Dynamics Investigation Lidar)/NASA | ||||
Sentinel 2C/D ** | >2020/N.N. | Multi-spectral imaging spectrometer | see Sentinel 2A/B |
Physically-Based Models/Radiative Transfer Descriptors | Empirical Approaches | ||
---|---|---|---|
Advantages | - more generic and transferable, | - simple set up, | |
- allows physically-based process feedback studies, | - regression coefficient estimation is straightforward and spatial and spectral resolution effects are considered indirectly through observation-specific calibration, | ||
- provide physically-based interfaces to environmental models (i.e., hydrological models through soil moisture and soil texture) | |||
- high site-specific performance may be achieved, | |||
- if large data sets available robust results may be achieved, | |||
- no programming skills required, various GUI-based statistical tools are available | |||
Disadvantages | - limited by accurately representing parameterization as in situ data cannot be seen in reality in most cases (i.e., soil moisture and temperature profile data, leaf angle distribution and biochemical quantities), | - transferability is limited by site-specific regression coefficient estimation, | |
- lack of generalization and reproducibility as it describes a site-specific observation predictor concept on the basis of defined dependencies and independencies | |||
- accuracy of output variable varies with applied inversion procedure, | |||
- process level description, no spatial integrated effects are considered (i.e., spectral effect of leaf angle distribution under varying spatial observation scale) | |||
- difficult implementation as programming skills and model process knowledge is required | |||
Model examples and References | For reflectance data of VNIR & SWIR: | - multi-SAR band forest biomass retrieval: [72] | |
- PROSPECT (leaf optical properties model) [73,74,75] | - NDVI measurements for tracking canopy structure and phenology: [76] | ||
- PROSAIL [77,78] (canopy bidirectional reflectance) | - Spectral vegetation index based biomass retrieval using different regression approaches and random forest regression trees: [79,80] | ||
For passive microwave data: | |||
- LPRM (land parameter retrieval model): [29,81] | - Forest carbon estimation: [82] | ||
- CMEM (community microwave emission model): [83,84] | |||
For SAR data: | |||
- polarimetric decomposition [85] | |||
- TomoSAR [66] | |||
For TIR data: | |||
- CUPID [86] | |||
- Thermal inertia modeling [87] | |||
Aspects for Application | The physically-based analysis of feedback processes allows an identification and description of process changes. Relevant observables can be identified and optimized for the application of empirical and data mining approaches. | Adjacent stand-alone empirical modeling, empirical functions are components of physically-based approaches and are somehow the individual proof of the concept. | |
Data mining/Machine Learning [88]: Random Forest [41,52], SupportVector Machine [89], Decision trees [39], Artificial Neural Networks [90] | |||
Application and Technologies | Advantages | Disadvantages | |
-To preferably automate the input data for physically-based or empirical models [91]. | - fusion of data from different sources without assumptions on feedback processes, | - transferability and generalization is limited by different in situ data sources, | |
- To optimize the inversion of physical-based models [92]. | |||
- As data mining may include data selection, pre-processing and transformation to other data formats it is very applicable to multi-source datasets related to forest health without assumptions [88]. | - lack of physical process reproducibility | ||
- process identification and output by self learning, | |||
- allows the detection of new processes, feedbacks and spatial and temporal dependencies |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pause, M.; Schweitzer, C.; Rosenthal, M.; Keuck, V.; Bumberger, J.; Dietrich, P.; Heurich, M.; Jung, A.; Lausch, A. In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sens. 2016, 8, 471. https://doi.org/10.3390/rs8060471
Pause M, Schweitzer C, Rosenthal M, Keuck V, Bumberger J, Dietrich P, Heurich M, Jung A, Lausch A. In Situ/Remote Sensing Integration to Assess Forest Health—A Review. Remote Sensing. 2016; 8(6):471. https://doi.org/10.3390/rs8060471
Chicago/Turabian StylePause, Marion, Christian Schweitzer, Michael Rosenthal, Vanessa Keuck, Jan Bumberger, Peter Dietrich, Marco Heurich, András Jung, and Angela Lausch. 2016. "In Situ/Remote Sensing Integration to Assess Forest Health—A Review" Remote Sensing 8, no. 6: 471. https://doi.org/10.3390/rs8060471