Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm
Abstract
:1. Introduction
2. Methodology
2.1. Principle of SMUF
2.2. Traditional Algorithms
2.3. GRNN-SMUF Algorithm
3. Case Study
3.1. Study Materials
3.2. Experimental Results
4. Discussion
4.1. Discussion of the Spread Parameter
4.2. Discussion of Training Sample Numbers
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Osti, R.; Nakasu, T. Lessons learned from southern and eastern Asian urban floods: From a local perspective. J. Flood Risk Manag. 2016, 9, 22–35. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Karymbalis, E.; Skilodimou, H.D.; Gaki-Papanastassiou, K.; Baltas, E.A. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Burke, M.I.; Sipe, N. Urban ferries and catastrophic floods experiences and lessons learned in Brisbane, Australia, and New York City. Transp. Res. Rec. 2014, 2459, 127–132. [Google Scholar] [CrossRef]
- Ticehurst, C.; Dutta, D.; Karim, F.; Petheram, C.; Guerschman, J.P. Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic modeling. Nat. Hazards 2015, 78, 803–820. [Google Scholar] [CrossRef]
- Dao, P.D.; Liou, Y.A. Object-based flood mapping and affected rice field estimation with Landsat 8 OLI and MODIS data. Remote Sens. 2015, 7, 5077–5097. [Google Scholar] [CrossRef]
- Teluguntla, P.; Ryu, D.; George, B.; Walker, J.P.; Malano, H.M. Mapping flooded rice paddies using time series of MODIS imagery in the Krishna River Basin, India. Remote Sens. 2015, 7, 8858–8882. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, X.; Liu, D. Blending MODIS and Landsat images for urban flood mapping. Int. J. Remote Sens. 2014, 35, 3237–3253. [Google Scholar] [CrossRef]
- Zhang, H.K.; Huang, B.; Zhang, M.; Cao, K.; Yu, L. A generalization of spatial and temporal fusion methods for remotely sensed surface parameters. Int. J. Remote Sens. 2015, 36, 4411–4445. [Google Scholar] [CrossRef]
- Farina, A.; Morabito, F.C.; Serpico, S.; Simone, G. Fusion of radar images: State of art and perspective. In Proceedings of the 2001 CIE International Conference on Radar, Beijing, China, 15–18 October 2001; pp. 9–15.
- Atkinson, P.M. Sub-pixel target mapping from soft-classified, remotely sensed imagery. Photogramm. Eng. Remote Sens. 2005, 71, 839–846. [Google Scholar] [CrossRef]
- Mertens, K.C.; de Baets, B.; Verbeke, L.P.C.; de Wulf, R.R. A sub-pixel mapping algorithm based on sub-pixel/pixel spatial attraction models. Int. J. Remote Sens. 2006, 27, 3293–3310. [Google Scholar] [CrossRef]
- Su, Y. Spatial continuity and self-similarity in super-resolution mapping: Self-similar pixel swapping. Remote Sens. Lett. 2016, 7, 338–347. [Google Scholar] [CrossRef]
- Zhao, J.; Zhong, Y.; Wu, Y.; Zhang, L.; Shu, H. Sub-pixel mapping based on conditional random fields for hyperspectral remote sensing imagery. IEEE J. Sel. Top. Signal Process. 2015, 9, 1049–1060. [Google Scholar] [CrossRef]
- Sanchez-Beato, A.; Pajares, G. Noniterative interpolation-based super-resolution minimizing aliasing in the reconstructed image. IEEE Trans. Image Process. 2008, 17, 1817–1826. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Y.; Xu, T.; Huang, C.; Liu, R.; Shi, K. Integration of Bayesian regulation back-propagation neural network and particle swarm optimization for enhancing sub-pixel mapping of flood inundation in river basins. Remote Sens. Lett. 2016, 7, 631–640. [Google Scholar] [CrossRef]
- Shi, W.; Zhao, Y.; Wang, Q. Sub-pixel mapping based on BP neural network with multiple shifted remote sensing images. J. Infrared Millim. Waves 2014, 33, 527–532. [Google Scholar]
- Li, X.; Ling, F.; Du, Y.; Feng, Q.; Zhang, Y. A spatial-temporal Hopfield neural network approach for super-resolution land cover mapping with multi-temporal different resolution remotely sensed images. ISPRS J. Photogramm. Remote Sens. 2014, 93, 76–87. [Google Scholar] [CrossRef]
- Specht, D.F. A generalized regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Niu, D.; Wang, H.; Gu, Z. Short-term load forecasting using general regression neural network. In Proceedings of the International Conference on Machine Learning and Cybernetics, Guangzhou, China, 18–21 August 2005; pp. 4076–4082.
- Li, X.; Zecchin, A.C.; Maier, H.R. Selection of smoothing parameter estimators for general regression neural networks—Applications to hydrological and water resources modeling. Environ. Model. Softw. 2014, 59, 162–186. [Google Scholar] [CrossRef]
- Zhou, Q.; Jiang, H.; Wang, J.; Zhou, J. A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 2014, 496, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shao, D.; Yang, H.; Yang, S. Prediction of water quality in South to North Water Transfer Project of China based on GA-optimized general regression neural network. Water Sci. Technol. Water Supply 2015, 15, 150–157. [Google Scholar] [CrossRef]
- Zhang, X.; Ling, Z.; Zhong, T.; Wang, K. Simulation of the availability index of soil copper content using general regression neural network. Environ. Earth Sci. 2011, 64, 1697–1702. [Google Scholar]
- Yin, S.; Tang, D.; Jin, X.; Chen, W.; Pu, N. A combined rotated general regression neural network method for river flow forecasting. Hydrol. Sci. J. J. Des. Sci. Hydrol. 2016, 61, 669–682. [Google Scholar] [CrossRef]
- Antanasijevic, D.; Pocajt, V.; Ristic, M.; Peric-Grujic, A. Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. Energy 2015, 84, 816–824. [Google Scholar] [CrossRef]
- Boufounas, E.M.; Boumhidi, J.; Ouriagli, M.; Boumhidi, I. A robust power control of the dfig wind turbine based on general regression neural network and APSO algorithm. Int. J. Power Energy Syst. 2015, 35, 64–73. [Google Scholar] [CrossRef]
- Hong, C.; Cheng, F.; Chen, C. Optimal control for variable-speed wind generation systems using General Regression Neural Network. Int. J. Electr. Power Energy Syst. 2014, 60, 14–23. [Google Scholar] [CrossRef]
- Nose-Filho, K.; Plasencia Lotufo, A.D.; Minussi, C.R. Short-term multinodal load forecasting using a modified general regression neural network. IEEE Trans. Power Deliv. 2011, 26, 2862–2869. [Google Scholar] [CrossRef]
- Oscar, T.P. General regression neural network model for behavior of Salmonella on chicken meat during cold storage. J. Food Sci. 2014, 79, 978–987. [Google Scholar] [CrossRef] [PubMed]
- Oscar, T.P. General regression neural network and Monte Carlo Simulation Model for survival and growth of Salmonella on raw chicken skin as a function of serotype, temperature, and time for use in risk assessment. J. Food Prot. 2009, 72, 2078–2087. [Google Scholar] [PubMed]
- Kuang, X.; Xu, L.; Huang, Y.; Liu, F. Real-time forecasting for short-term traffic flow based on general regression neural network. In Proceedings of the 8th World Congress on Intelligent Control and Automation, Jinan, China, 7–9 July 2010; pp. 2776–2780.
- Celikoglu, H.B.; Dell’Orco, M. General regression neural network method for delay modeling in dynamic network loading. In Proceedings of the 6th International Conference on Traffic and Transportation Studies, Nanjing, China, 5–7 August 2008; pp. 352–362.
- Niwa, T. Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures. J. Chem. Inf. Comput. Sci. 2003, 43, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.W.; Chen, Y.Z. Quantitative structure-pharmacokinetic relationships for drug distribution properties by using general regression neural network. J. Pharm. Sci. 2005, 94, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S.; et al. Global land surface fractional vegetation cover estimation using general regression neural networks from MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Xiao, Z.; Liang, S.; Wang, J.; Chen, P.; Yin, X.; Zhang, L.; Song, J. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 2014, 52, 209–223. [Google Scholar] [CrossRef]
- Pandey, A.; Thapa, K.B.; Prasad, R.; Singh, K.P. General regression neural network and radial basis neural network for the estimation of crop variables of lady finger. J. Indian Soc. Remote Sens. 2012, 40, 709–715. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Blakey, T.; Melesse, A.; Hall, M.O. Supervised classification of benthic reflectance in shallow subtropical waters using a generalized pixel-based classifier across a time series. Remote Sens. 2015, 7, 5098–5116. [Google Scholar] [CrossRef]
- Moller, M.; Birger, J.; Gidudu, A.; Glasser, C. A framework for the geometric accuracy assessment of classified objects. Int. J. Remote Sens. 2013, 34, 8685–8698. [Google Scholar] [CrossRef]
Methods | Study Area 1 | Study Area 2 | ||||||
---|---|---|---|---|---|---|---|---|
OA (%) | KC | APA (%) | AUA (%) | OA (%) | KC | APA (%) | AUA (%) | |
SAM-SMUF | 83.0 | 0.500 | 71.5 | 83.4 | 83.9 | 0.558 | 75.5 | 81.9 |
SBPNN-SMUF | 78.7 | 0.406 | 68.4 | 73.7 | 79.5 | 0.435 | 69.8 | 75.2 |
BRBPNN-SMUF | 84.6 | 0.573 | 76.1 | 83.0 | 84.9 | 0.598 | 78.2 | 82.3 |
GRNN-SMUF | 85.8 | 0.603 | 77.3 | 85.3 | 86.1 | 0.628 | 79.5 | 84.2 |
SP | OA (%) | KC | APA (%) | AUA (%) |
---|---|---|---|---|
0.05 | 84.3 | 0.588 | 78.3 | 80.9 |
0.10 | 85.5 | 0.610 | 78.7 | 83.1 |
0.15 | 85.5 | 0.602 | 77.7 | 84.0 |
0.20 | 85.8 | 0.603 | 77.3 | 85.3 |
0.25 | 85.5 | 0.587 | 76.1 | 85.7 |
0.30 | 85.3 | 0.578 | 75.5 | 85.9 |
0.35 | 85.1 | 0.570 | 74.9 | 86.1 |
0.40 | 84.8 | 0.556 | 74.1 | 86.5 |
0.45 | 84.4 | 0.544 | 73.4 | 86.1 |
0.50 | 84.0 | 0.530 | 72.8 | 85.3 |
TS (%) | OA (%) | KC | APA (%) | AUA (%) |
---|---|---|---|---|
10 | 83.2 | 0.540 | 74.9 | 80.3 |
20 | 84.6 | 0.568 | 75.7 | 83.3 |
30 | 85.8 | 0.603 | 77.3 | 85.3 |
40 | 86.6 | 0.629 | 78.7 | 86.1 |
50 | 87.0 | 0.640 | 79.2 | 86.9 |
60 | 87.7 | 0.659 | 80.0 | 87.8 |
70 | 88.0 | 0.670 | 80.6 | 88.2 |
80 | 88.3 | 0.676 | 80.9 | 88.6 |
90 | 88.6 | 0.684 | 81.2 | 89.2 |
100 | 88.8 | 0.688 | 81.2 | 89.9 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Xu, T.; Chen, Y. Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm. Remote Sens. 2016, 8, 625. https://doi.org/10.3390/rs8080625
Li L, Xu T, Chen Y. Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm. Remote Sensing. 2016; 8(8):625. https://doi.org/10.3390/rs8080625
Chicago/Turabian StyleLi, Linyi, Tingbao Xu, and Yun Chen. 2016. "Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm" Remote Sensing 8, no. 8: 625. https://doi.org/10.3390/rs8080625
APA StyleLi, L., Xu, T., & Chen, Y. (2016). Improved Urban Flooding Mapping from Remote Sensing Images Using Generalized Regression Neural Network-Based Super-Resolution Algorithm. Remote Sensing, 8(8), 625. https://doi.org/10.3390/rs8080625