Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid
Abstract
:1. Introduction
2. The Study Site and Data
2.1. Flux Sites and Data
2.2. Remote Sensing Data
3. Methodology
3.1. Representativeness of Flux Measurements
3.2. Footprint and Footprint Climatology
3.3. Classification of EC Flux Measurements
4. Results
4.1. Footprint Climatology
4.2. Spatial Representativeness at Vegetation-Type Level
4.3. Spatial Representativeness at Spatial-Scale Level
5. Discussion
5.1. Assessment of Spatial Representativeness
5.2. Implications for Up-Scaling
5.3. Limitation of Remote Sensing Images
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Baldocchi, D.D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.Y.; Running, S.W.; Anthoni, P.; Bernhofer, Ch.; Davis, K.J.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- McCaughey, J.H.; Pejam, M.R.; Arain, M.A.; Cameron, D.A. Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agric. For. Meteorol. 2006, 140, 79–96. [Google Scholar] [CrossRef]
- Ponce Campos, G.E.; Moran, M.S.; Huete, A.; Zhang, Y.G.; Bresloff, C.; Huxman, T.E.; Eamus, D.; Bosch, D.D.; Buda, A.R.; Gunter, S.A.; et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 2013, 494, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.D.; Meyers, T. On using eco-physiological, micRometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: A perspective. Agric. For. Meteorol. 1998, 90, 1–25. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Xu, L.; Kiang, N. How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agric. For. Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Kaplan, J.O.; Levis, S.; Lucht, W.; Sykes, M.T.; et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Falge, E.; Reth, S.; Brüggemann, N.; Butterbach-Bahl, K.; Goldberg, V.; Oltchev, A.; Schaaf, S.; Spindler, G.; Stiller, B.; Queck, R.; et al. ComParison of surface energy exchange models with eddy flux data in forest and grassland ecosystems of Germany. Ecol. Model. 2005, 188, 174–216. [Google Scholar] [CrossRef]
- Santaren, D.; Peylin, P.; Viovy, N.; Ciais, P. Optimizing a process-based ecosystem model with eddy-covariance flux measurements: A pine forest in southern France. Glob. Biogeochem. Cycles 2007, 21, 185–194. [Google Scholar] [CrossRef]
- VinUKollu, R.K.; Wood, E.F.; Ferguson, C.R.; Fisher, J.B. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sens. Environ. 2011, 115, 801–823. [Google Scholar] [CrossRef]
- Wang, H.; Jia, G. Regional estimates of evapotranspiration over Northern China using a remote-sensing-based triangle interpolation method. Adv. Atmos. Sci. 2013, 30, 1479–1490. [Google Scholar] [CrossRef]
- Kim, J.; Guo, Q.; Baldocchi, D.D.; Leclerc, M.Y.; Xu, L.; Schmid, H.P. Upscaling fluxes from tower to landscape: Overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover. Agric. For. Meteorol. 2006, 136, 132–146. [Google Scholar] [CrossRef]
- Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Banza, J.; Bernhofer, C.; Bonnefond, J.M.; Brunet, Y.; Carrara, A.; Clement, R.; et al. Quality control of CarboEurope flux data—Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences 2008, 5, 433–450. [Google Scholar]
- Su, Z.B. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–99. [Google Scholar] [CrossRef]
- Wylie, B.K.; Johnson, D.A.; Laca, E.; Saliendra, N.Z.; Gilmanovd, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem. Remote Sens. Environ. 2003, 85, 243–255. [Google Scholar] [CrossRef]
- Gilmanov, T.G.; Tieszen, L.L.; Wylie, B.K.; Flanagan, L.B.; Frank, A.B.; Haferkamp, M.R.; Meyers, T.P.; Morgan, J.A. Integration of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the Northern Great Plains: Potential for quantitative spatial extrapolation. Glob. Ecol. Biogeogr. 2005, 14, 271–292. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Myneni, R.B.; Los, S.O.; Asrar, G. Potential gross primary productivity of terrestrial vegetation from 1982–1990. Geophys. Res. Lett. 1995, 22, 2617–2620. [Google Scholar] [CrossRef]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Chang. Biol. 2006, 12, 42–55. [Google Scholar] [CrossRef]
- Schuepp, P.H.; Leclerc, M.Y.; Macpherson, J.I.; Desjardin, R.L. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound. Layer Meteorol. 1990, 50, 355–373. [Google Scholar]
- Schmid, H.P. Experimental design for flux measurements: Matching scales of observations and fluxes. Agric. For. Meteorol. 1997, 87, 179–200. [Google Scholar] [CrossRef]
- Yi, C. Momentum Transfer within Canopies. J. Appl. Meteorol. Clim. 2008, 47, 262–275. [Google Scholar] [CrossRef]
- Chen, B.; Coops, N.C.; Fu, D.; Margolis, H.A.; Amiro, B.D.; Barr, A.G.; Black, T.A.; Arain, M.A.; Bourqueh, C.P.-A.; Flanagan, L.B.; et al. Assessing eddy-covariance flux tower location bias across the Fluxnet-Canada Research Network based on remote sensing and footprint modelling. Agric. For. Meteorol. 2011, 151, 87–100. [Google Scholar] [CrossRef]
- Barcza, Z.; Kern, A.; Haszpra, L.; Kljun, N. Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. Agric. For. Meteorol. 2009, 149, 795–807. [Google Scholar] [CrossRef]
- Chen, B.; Coops, N.C.; Fu, D.; Margolis, H.A.; Amiro, B.D.; Black, T.A.; Arain, M.A.; Barr, A.G.; Bourqueh, C.P.-A.; Flanagan, L.B.; et al. Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian Carbon Program Network using remote sensing and footprint analysis. Remote Sens. Environ. 2012, 124, 742–755. [Google Scholar] [CrossRef]
- Morin, T.H.; Bohrer, G.; Frasson, R.P.d.M.; Naor-Azreli, L.; Mesi, S.; Stefanik, K.C.; Schäfer, K.V.R. Environmental drivers of methane fluxes from an urban temperate wetland park. J. Geophys. Res. Biogeosci. 2014, 119, 2188–2208. [Google Scholar] [CrossRef]
- Nagler, P.L.; Scott, R.L.; Westenburg, C.; Cleverly, J.R.; Glenn, E.P.; Huete, A.R. Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sens. Environ. 2005, 97, 337–351. [Google Scholar] [CrossRef]
- Costa-e-Silva, F.; Correia, A.C.; Piayda, A.; Dubbert, M.; Rebmann, C.; Cuntz, M.; Werner, C.; David, J.S.; Pereira, J.S. Effects of an extremely dry winter on net ecosystem carbon exchange and tree phenology at a cork oak woodland. Agric. For. Meteorol. 2015, 204, 48–57. [Google Scholar] [CrossRef]
- Xin, Q.; Broich, M.; Suyker, A.E.; Yu, L.; Gong, P. Multi-scale evaluation of light use efficiency in MODIS gross primary productivity for croplands in the Midwestern United States. Agric. For. Meteorol. 2015, 201, 111–119. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.S.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Yuan, W.P.; Liu, S.G.; Zhou, G.S.; Zhou, G.Y.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L.; et al. Deriving a light use efficiency model from eddy covariance flux data for predicting gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef]
- Wu, C.; Chen, J.M.; Huang, N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration. Remote Sens. Environ. 2011, 115, 3424–3435. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Guan, H.; Jiang, L. A novel algorithm to assess gross primary production for terrestrial ecosystems from MODIS imagery. J. Geophys. Res. Biogeosci. 2013, 118, 590–605. [Google Scholar] [CrossRef]
- Smith, B.; Prentice, I.C.; Sykes, M.T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global Ecol. Biogeogr. 2001, 10, 621–637. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Yang, J.; Banger, K.; Huntzinger, D.N.; Schwalm, C.R.; Michalak, A.M.; Cook, R.; Ciais, P.; Hayes, D.; et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Glob. Biogeochem. Cycles 2015, 29, 775–792. [Google Scholar] [CrossRef]
- Wang, H.; Jia, G.; Fu, C.; Feng, J.; Zhao, T.; Ma, Z. Deriving maximal light use efficiency from coordinated flux measurements and satellite data for regional gross primary production modeling. Remote Sens. Environ. 2010, 114, 2248–2258. [Google Scholar] [CrossRef]
- Schmid, H.P.; Lloyd, C.R. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas. Agric. For. Meteorol. 1999, 93, 195–309. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Goward, S.N.; Markham, B.; Dye, D.G.; Dulaney, W.; Yang, J. NorLimalized difference vegetation index measurements from the advanced very high resolution radiometer. Remote Sens. Environ. 1991, 35, 257–277. [Google Scholar] [CrossRef]
- Kormann, R.; Meixner, F.X. An analytical footprint model for non-neutral stratification. Bound. Layer Meteorol. 2001, 99, 207–224. [Google Scholar] [CrossRef]
- Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comParison of eddy-covariance and large aperture scintilLometer measurements with respect to the energy balance problem. Hydrol. Earth Syst. Sci. 2011, 15, 1291–1306. [Google Scholar] [CrossRef]
- Soegaard, H.; Jensen, N.O.; Boegh, E.; Hasager, C.B.; Schelde, K.; Thomsen, A. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modelling. Agric. For. Meteorol. 2003, 114, 153–173. [Google Scholar] [CrossRef]
- Yates, D.N.; Chen, F.; Lemone, M.A.; Qualle, R.; Oncley, S.P.; Grossman, R.L.; Brandes, E.A. A Cooperative Atmosphere-Surface Exchange Study (CASES) Dataset for Analyzing and Parameterizing the Effects of Land Surface Heterogeneity on Area-Averaged Surface Heat Fluxes. J. Appl. Meteorol. 2001, 40, 921–937. [Google Scholar] [CrossRef]
- Wilson, K.B.; Baldocchi, D.D. Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric. For. Meteorol. 2000, 100, 1–28. [Google Scholar] [CrossRef]
- Caparrini, F.; Castelli, F.; Entekhabi, D. Estimation of surface turbulent fluxes through assimilation of radiometric surface temperature sequences. J. Hydrometeorol. 2004, 5, 145–159. [Google Scholar] [CrossRef]
- Gelybó, G.; Barcza, Z.; Kern, A.; Kljun, N. Effect of spatial heterogeneity on the validation of remote sensing based GPP estimations. Agric. For. Meteorol. 2013, 174–175, 43–53. [Google Scholar] [CrossRef]
- Fu, D.; Chen, B.; Zhang, H.; Wang, J.; Black, T.A.; Amiro, B.D.; Bohrer, G.; Bolstad, P.; Coulter, R.; Rahman, A.F.; et al. Estimating landscape net ecosystem exchange at high spatial–temporal resolution based on landsat data, an improved upscaling model framework, and eddy covariance flux measurements. Remote Sens. Environ. 2014, 141, 90–104. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Song, L.; Zhao, Q.; Ge, Y.; Xu, T.; Ma, Y.; Zhu, Z.; Jia, Z.; Zhang, F. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agric. For. Meteorol. 2016. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Caselles, V.; Rubio, E.M. Analysis of the energy balance closure over a FLUXNET boreal forest in Finland. Hydrol. Earth Syst. 2012, 14, 1487–1497. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
Site | Vegetation Type | EC Sensor Height (m) | Elevation (m) | Displacement Height (m) | Latitude | Longitude | MAP * (mm) |
---|---|---|---|---|---|---|---|
Arou (AR) | Sub-alpine meadow steppe | 3.2 | 3027 | 0.1 | 38°03′N | 100°28′E | 396 |
Changwu (CW) | Deciduous broadleaf forest | 12.5 | 1224 | 0.4 | 35°15′N | 107°41′E | 540 |
Dayekou (DYK) | Evergreen needleleaf forest | 20.3 | 2848 | 10 | 38°32′N | 100°15′E | 360 |
Dongsu (DS) | Desert steppe | 2 | 970 | 0.1 | 44°05′N | 113°34′E | 287 |
Guantao (GT) | Cropland | 15.6 | 42 | 0.4 | 36°52′N | 115°13′E | 549 |
Jinzhou (JZ) | Cropland (maize) | 4 | 22.7 | 1.8 | 41°09′N | 121°12′E | 463 |
Linze (LZ) | Cropland (maize) | 4 | 1378 | 1.1 | 39°20′N | 100°25′E | 376 |
Maqu (MQ) | Sub-alpine meadow steppe | 3.5 | 3423 | 0.2 | 33°89′N | 102°14′E | 607 |
Miyun (MY) | Deciduous broadleaf forest | 26.7 | 350 | 3.8 | 40°38′N | 117°19′E | 584 |
Naiman (NM) | Desert steppe | 2 | 361 | 0.5 | 42°56′N | 120°42′E | 405 |
Shapotou (SPT) | Steppe desert | 4 | 1269 | 0.6 | 37°46′N | 105°01′E | 187 |
Tongy grass (TYGR) | Degraded meadow steppe | 2 | 184 | 0.2 | 44°34′N | 122°55′E | 404 |
Tongyu crop (TYCR) | Cropland (sunflower) | 3 | 184 | 0.8 | 44°35′N | 122°52′E | 404 |
Yingke (YK) | Cropland (maize) | 2.8 | 1525 | 1.6 | 38°51′N | 100°15′E | 382 |
Yuzhong (YZ) | Steppe desert | 2.9 | 1971 | 0.2 | 39°05′N | 100°16′E | 353 |
Site | Image Information | Acquisition Time |
---|---|---|
AR | Path/Row:133/34 | 11 August 2009 |
CW | Path/Row:128/36 | 5 June 2009 |
DYK | Path/Row:133/33 | 11 August 2009 |
DS | Path/Row:126/29 | 21 August 2007 |
GT | Path/Row:123/35 | 22 September 2009 |
JZ | Path/Row:120/31 | 15 July 2009 |
LZ | Path/Row:133/33 | 11 August 2009 |
MQ | Path/Row:131/37 | 28 July 2009 |
MY | Path/Row:123/32 | 20 July 2009 |
NM | Path/Row:121/30 | 7 August 2009 |
SPT | Path/Row:130/34 | 6 August 2009 |
TYGR | Path/Row:120/29 | 15 July 2009 |
TYCR | Path/Row:120/29 | 15 July 2009 |
YK | Path/Row:133/33 | 11 August 2009 |
YZ | Path/Row:130/35 | 6 August 2009 |
Weighted FTVT | Un-Weighted FTVT | NDVI Bias in Flux Site Scale | NDVI Bias in Remote Sensing Pixel Scale | NDVI Bias in Land Model Grid Scale | |
---|---|---|---|---|---|
AR | 1 | 0.99 | −0.59 | −1.03 | 12.28 |
CW | 0.41 | 0.46 | −0.97 | −0.64 | −3.01 |
DS | 1 | 0.98 | 1.05 | 3.48 | 1.24 |
DYK | 0.54 | 0.33 | 3.79 | 1.45 | 12.19 |
GT | 0.88 | 0.81 | 0.52 | 2.28 | 6.95 |
JZ | 0.96 | 0.7 | 5.88 | 27.28 | 41.55 |
LZ | 0.99 | 0.92 | 2.65 | 17.65 | 112.93 |
MQ | 0.99 | 0.95 | 0.63 | 1.66 | 6.60 |
MY | 0.29 | 0.48 | −3.97 | 4.73 | −2.83 |
NM | 0.97 | 0.78 | −6.92 | −9.54 | 1.89 |
SPT | 0.83 | 0.49 | −6.24 | −18.94 | −6.99 |
TYC | 0.95 | 0.69 | −0.43 | −3.03 | −6.49 |
TYG | 0.8 | 0.86 | 4.20 | 9.45 | 2.71 |
YK | 0.97 | 0.88 | 4.92 | 17.34 | 24.27 |
YZ | 0.92 | 0.66 | 0.61 | −4.31 | −13.96 |
Flux Site Scale | Remote Sensing Pixel Scale | Land Model Grid Scale | |
---|---|---|---|
Homogeneous measurements | 9 | 7 | 5 |
Representative measurements | 4 | 2 | 4 |
Acceptable measurements | 1 | 2 | 3 |
Disturbed measurements | 1 | 4 | 3 |
Site | Weighted NDVI | Un-Weighted NDVI | Difference (%) |
---|---|---|---|
AR | 0.69 | 0.68 | −0.33 |
CW | 0.33 | 0.32 | −0.56 |
DS | 0.28 | 0.27 | −4.46 |
DYK | 0.46 | 0.48 | 3.75 |
GT | 0.55 | 0.54 | −2.51 |
JZ | 0.68 | 0.61 | −10.58 |
LZ | 0.55 | 0.52 | −5.46 |
MQ | 0.72 | 0.72 | −0.60 |
MY | 0.58 | 0.51 | −11.11 |
NM | 0.38 | 0.42 | 12.47 |
SPT | 0.14 | 0.18 | 28.92 |
TYC | 0.36 | 0.32 | −11.45 |
TYG | 0.35 | 0.36 | 2.26 |
YK | 0.58 | 0.53 | −8.16 |
YZ | 0.21 | 0.19 | −7.24 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Jia, G.; Zhang, A.; Miao, C. Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid. Remote Sens. 2016, 8, 742. https://doi.org/10.3390/rs8090742
Wang H, Jia G, Zhang A, Miao C. Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid. Remote Sensing. 2016; 8(9):742. https://doi.org/10.3390/rs8090742
Chicago/Turabian StyleWang, Hesong, Gensuo Jia, Anzhi Zhang, and Chen Miao. 2016. "Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid" Remote Sensing 8, no. 9: 742. https://doi.org/10.3390/rs8090742
APA StyleWang, H., Jia, G., Zhang, A., & Miao, C. (2016). Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid. Remote Sensing, 8(9), 742. https://doi.org/10.3390/rs8090742