Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Architecture of Processing
2.2.2. Probabilistic Model
- Give initial estimates of the Gs.
- Use Equations (2) and (3) to obtain estimates of the ps and αs.
- Use Equation (5) and the estimates of the ps and αs to calculate new estimates of the Gs.
- Repeat Steps 2 and 3 until the results converge.
3. Experiment Results
4. Discussion
5. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Participant 1 | Participant 15 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.64 | 0.35 | 0.01 | 1 | 0.52 | 0.48 | 0 |
2 | 0.38 | 0.5 | 0.11 | 2 | 0.15 | 0.69 | 0.16 |
3 | 0 | 0.35 | 0.65 | 3 | 0.1 | 0.29 | 0.62 |
Participant 2 | Participant 16 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.83 | 0.12 | 0.05 | 1 | 0.7 | 0.3 | 0 |
2 | 0.5 | 0.27 | 0.23 | 2 | 0.07 | 0.59 | 0.34 |
3 | 0 | 0.36 | 0.64 | 3 | 0.06 | 0.11 | 0.83 |
Participant 3 | Participant 17 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.9 | 0.08 | 0.03 | 1 | 0.99 | 0.01 | 0 |
2 | 0.62 | 0.38 | 0 | 2 | 0.4 | 0.6 | 0 |
3 | 0.24 | 0.53 | 0.24 | 3 | 0.1 | 0.8 | 0.1 |
Participant 4 | Participant 18 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.66 | 0.3 | 0.04 | 1 | 0.76 | 0.24 | 0 |
2 | 0.23 | 0.73 | 0.04 | 2 | 0.25 | 0.5 | 0.25 |
3 | 0.09 | 0.29 | 0.62 | 3 | 0 | 0.37 | 0.63 |
Participant 5 | Participant 19 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.94 | 0.06 | 0 | 1 | 0.91 | 0.09 | 0 |
2 | 0.32 | 0.68 | 0 | 2 | 0.39 | 0.61 | 0 |
3 | 0.05 | 0.8 | 0.15 | 3 | 0.11 | 0.37 | 0.53 |
Participant 6 | Participant 20 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.46 | 0.5 | 0.04 | 1 | 0.46 | 0.29 | 0.24 |
2 | 0.12 | 0.74 | 0.14 | 2 | 0 | 0.76 | 0.24 |
3 | 0 | 0.32 | 0.68 | 3 | 0 | 0.11 | 0.89 |
Participant 7 | Participant 21 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.47 | 0.47 | 0.06 | 1 | 0.83 | 0.15 | 0.02 |
2 | 0.46 | 0.54 | 0 | 2 | 0.27 | 0.73 | 0 |
3 | 0.25 | 0.35 | 0.4 | 3 | 0.05 | 0.67 | 0.29 |
Participant 8 | Participant 22 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.9 | 0.09 | 0.01 | 1 | 0.54 | 0.45 | 0.01 |
2 | 0.42 | 0.58 | 0 | 2 | 0 | 0.46 | 0.54 |
3 | 0.08 | 0.61 | 0.3 | 3 | 0 | 0.24 | 0.76 |
Participant 9 | Participant 23 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.26 | 0.56 | 0.17 | 1 | 1 | 0 | 0 |
2 | 0.04 | 0.4 | 0.56 | 2 | 0.81 | 0.19 | 0 |
3 | 0 | 0.15 | 0.85 | 3 | 0.43 | 0.43 | 0.14 |
Participant 10 | Participant 24 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.73 | 0.27 | 0 | 1 | 0.94 | 0.06 | 0 |
2 | 0.08 | 0.61 | 0.31 | 2 | 0.69 | 0.31 | 0 |
3 | 0 | 0.3 | 0.7 | 3 | 0.26 | 0.48 | 0.26 |
Participant 11 | Participant 25 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.91 | 0.09 | 0 | 1 | 0.48 | 0.49 | 0.02 |
2 | 0.15 | 0.85 | 0 | 2 | 0 | 0.77 | 0.23 |
3 | 0 | 0.73 | 0.27 | 3 | 0 | 0.05 | 0.95 |
Participant 12 | Participant 26 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.36 | 0.64 | 0 | 1 | 0.98 | 0.03 | 0 |
2 | 0 | 0.79 | 0.21 | 2 | 0.69 | 0.27 | 0.04 |
3 | 0.05 | 0.68 | 0.26 | 3 | 0.2 | 0.35 | 0.45 |
Participant 13 | Participant 27 | ||||||
Observed | Observed | ||||||
True | 1 | 2 | 3 | True | 1 | 2 | 3 |
1 | 0.77 | 0.18 | 0.05 | 1 | 0.76 | 0.19 | 0.05 |
2 | 0.23 | 0.5 | 0.27 | 2 | 0.35 | 0.54 | 0.12 |
3 | 0 | 0.38 | 0.62 | 3 | 0.05 | 0.38 | 0.57 |
Participant 14 | |||||||
Observed | |||||||
True | 1 | 2 | 3 | ||||
1 | 0.67 | 0.33 | 0 | ||||
2 | 0.09 | 0.91 | 0 | ||||
3 | 0.05 | 0.43 | 0.52 |
Building ID | Damage Types | Building ID | Damage Types | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | ||
1 | 0 | 0 | 1 | 65 | 1 | 0 | 0 |
2 | 0.002 | 0.998 | 0 | 66 | 0.024 | 0.976 | 0 |
3 | 0 | 0 | 1 | 67 | 0 | 0 | 1 |
4 | 1 | 0 | 0 | 68 | 0 | 0.003 | 0.997 |
5 | 1 | 0 | 0 | 69 | 1 | 0 | 0 |
6 | 0.006 | 0.994 | 0 | 70 | 1 | 0 | 0 |
7 | 1 | 0 | 0 | 71 | 1 | 0 | 0 |
8 | 0.996 | 0.004 | 0 | 72 | 0.956 | 0.044 | 0 |
9 | 0 | 0 | 1 | 73 | 0.999 | 0.001 | 0 |
10 | 1 | 0 | 0 | 74 | 0 | 1 | 0 |
11 | 1 | 0 | 0 | 75 | 0 | 1 | 0 |
12 | 1 | 0 | 0 | 76 | 0 | 0 | 1 |
13 | 0.01 | 0.99 | 0 | 77 | 0 | 0 | 1 |
14 | 0 | 1 | 0 | 78 | 1 | 0 | 0 |
15 | 1 | 0 | 0 | 79 | 0 | 0 | 1 |
16 | 0 | 1 | 0 | 80 | 0 | 0 | 1 |
17 | 1 | 0 | 0 | 81 | 1 | 0 | 0 |
18 | 1 | 0 | 0 | 82 | 1 | 0 | 0 |
19 | 0 | 1 | 0 | 83 | 1 | 0 | 0 |
20 | 0 | 1 | 0 | 84 | 1 | 0 | 0 |
21 | 0 | 0 | 1 | 85 | 1 | 0 | 0 |
22 | 0 | 0 | 1 | 86 | 1 | 0 | 0 |
23 | 0 | 1 | 0 | 87 | 1 | 0 | 0 |
24 | 1 | 0 | 0 | 88 | 0 | 0.97 | 0.03 |
25 | 0 | 0.072 | 0.928 | 89 | 1 | 0 | 0 |
26 | 1 | 0 | 0 | 90 | 1 | 0 | 0 |
27 | 1 | 0 | 0 | 91 | 0 | 1 | 0 |
28 | 1 | 0 | 0 | 92 | 0.001 | 0.999 | 0 |
29 | 0 | 1 | 0 | 93 | 1 | 0 | 0 |
30 | 0 | 0 | 1 | 94 | 0 | 1 | 0 |
31 | 0 | 1 | 0 | 95 | 0 | 1 | 0 |
32 | 0 | 1 | 0 | 96 | 0 | 1 | 0 |
33 | 1 | 0 | 0 | 97 | 0 | 0.99 | 0.01 |
34 | 0 | 0 | 1 | 98 | 1 | 0 | 0 |
35 | 0 | 0 | 1 | 99 | 1 | 0 | 0 |
36 | 1 | 0 | 0 | 100 | 1 | 0 | 0 |
37 | 0 | 0.998 | 0.002 | 101 | 1 | 0 | 0 |
38 | 1 | 0 | 0 | 102 | 0 | 1 | 0 |
39 | 1 | 0 | 0 | 103 | 1 | 0 | 0 |
40 | 1 | 0 | 0 | 104 | 1 | 0 | 0 |
41 | 1 | 0 | 0 | 105 | 0.999 | 0.001 | 0 |
42 | 0 | 0 | 1 | 106 | 1 | 0 | 0 |
43 | 0 | 0 | 1 | 107 | 1 | 0 | 0 |
44 | 1 | 0 | 0 | 108 | 0 | 1 | 0 |
45 | 1 | 0 | 0 | 109 | 1 | 0 | 0 |
46 | 1 | 0 | 0 | 110 | 1 | 0 | 0 |
47 | 1 | 0 | 0 | 111 | 1 | 0 | 0 |
48 | 0 | 1 | 0 | 112 | 1 | 0 | 0 |
49 | 1 | 0 | 0 | 113 | 1 | 0 | 0 |
50 | 1 | 0 | 0 | 114 | 1 | 0 | 0 |
51 | 1 | 0 | 0 | 115 | 1 | 0 | 0 |
52 | 1 | 0 | 0 | 116 | 1 | 0 | 0 |
53 | 1 | 0 | 0 | 117 | 1 | 0 | 0 |
54 | 0 | 1 | 0 | 118 | 1 | 0 | 0 |
55 | 1 | 0 | 0 | 119 | 1 | 0 | 0 |
56 | 1 | 0 | 0 | 120 | 1 | 0 | 0 |
57 | 1 | 0 | 0 | 121 | 1 | 0 | 0 |
58 | 1 | 0 | 0 | 122 | 0 | 0 | 1 |
59 | 1 | 0 | 0 | 123 | 1 | 0 | 0 |
60 | 1 | 0 | 0 | 124 | 1 | 0 | 0 |
61 | 1 | 0 | 0 | 125 | 1 | 0 | 0 |
62 | 0 | 0 | 1 | 126 | 0 | 0 | 1 |
63 | 0 | 0 | 1 | 127 | 1 | 0 | 0 |
64 | 1 | 0 | 0 |
References
- Geiß, C.; Taubenböck, H.; Tyagunov, S.; Tisch, A.; Post, J.; Lakes, T. Assessment of seismic building vulnerability from space. Earthq. Spectra 2014, 30, 1553–1583. [Google Scholar] [CrossRef]
- Lei, L.; Liu, L.; Zhang, L.; Bi, J.; Wu, Y.; Jiao, Q.; Zhang, W. Assessment and analysis of collapsing houses by aerial images in the wenchuan earthquake. J. Remote Sens. 2010, 14, 333–344. [Google Scholar]
- Chiroiu, L. Damage assessment of the 2003 Bam, Iran, earthquake using Ikonos imagery. Earthq. Spectra 2005, 21, 219–224. [Google Scholar] [CrossRef]
- Saito, K.; Spence, R.; de C Foley, T.A. Visual damage assessment using high-resolution satellite images following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 309–318. [Google Scholar] [CrossRef]
- Vu, T.T.; Matsuoka, M.; Yamazaki, F. Detection and animation of damage using very high-resolution satellite data following the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 319–327. [Google Scholar] [CrossRef]
- Huyck, C.K.; Adams, B.J.; Cho, S.; Chung, H.-C.; Eguchi, R.T. Towards rapid citywide damage mapping using neighborhood edge dissimilarities in very high-resolution optical satellite imagery—Application to the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 255–266. [Google Scholar] [CrossRef]
- Hutchinson, T.C.; Chen, Z.Q. Optimized estimated ground truth for object-based urban damage estimation using satellite images from the 2003 Bam, Iran, earthquake. Earthq. Spectra 2005, 21, 239–254. [Google Scholar] [CrossRef]
- Chen, Z.; Hutchinson, T.C. Probabilistic urban structural damage classification using bitemporal satellite images. Earthq. Spectra 2010, 26, 87–109. [Google Scholar] [CrossRef]
- Barrington, L.; Ghosh, S.; Greene, M.; Har-Noy, S.; Berger, J.; Gill, S.; Lin, A.Y.M.; Huyck, C. Crowdsourcing earthquake damage assessment using remote sensing imagery. Ann. Geophys. 2011, 54, 680–687. [Google Scholar]
- See, L.; Comber, A.; Salk, C.; Fritz, S.; van der Velde, M.; Perger, C.; Schill, C.; McCallum, I.; Kraxner, F.; Obersteiner, M. Comparing the quality of crowdsourced data contributed by expert and non-experts. PLoS ONE 2013, 8, e69958. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, M.F.; Glennon, J.A. Crowdsourcing geographic information for disaster response: A research frontier. Int. J. Digit. Earth 2010, 3, 231–241. [Google Scholar] [CrossRef]
- Ghosh, S.; Huyck, C.K.; Greene, M.; Gill, S.P.; Bevington, J.; Svekla, W.; DesRoches, R.; Eguchi, R.T. Crowdsourcing for rapid damage assessment: The global earth observation catastrophe assessment network (GEO-CAN). Earthq. Spectra 2011, 27, S179–S198. [Google Scholar] [CrossRef]
- Huynh, A.; Eguchi, M.; Lin, A.Y.-M.; Eguchi, R. Limitations of crowdsourcing using the EMS-98 scale in remote disaster sensing. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014.
- Goodchild, M.F.; Li, L. Assuring the quality of volunteered geographic information. Spat. Stat. 2012, 1, 110–120. [Google Scholar] [CrossRef]
- Ofli, F.; Meier, P.; Imran, M.; Castillo, C.; Tuia, D.; Rey, N.; Briant, J.; Millet, P.; Reinhard, F.; Parkan, M. Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data 2016, 4, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Dell’Acqua, F.; Gamba, P. Remote sensing and earthquake damage assessment: Experiences, limits, and perspectives. Proc. IEEE 2012, 100, 2876–2890. [Google Scholar] [CrossRef]
- Aixia, D.; Xiaoqing, W.; Xiang, D.; Xiaoxiang, Y.; Long, W.; Yanfang, D.; Dingjian, J. Quantitative methods of rapid earthquake damage assessment using remote sensing and its application in yushu earthquake. J. Catastr. 2012, 27, 75–80. [Google Scholar]
- Dawid, A.P.; Skene, A.M. Maximum likelihood estimation of observer error-rates using the EM algorithm. Appl. Stat. 1979, 20–28. [Google Scholar] [CrossRef]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–38. [Google Scholar]
- Kerle, N.; Hoffman, R.R. Collaborative damage mapping for emergency response: The role of cognitive systems engineering. Nat. Hazards Earth Syst. Sci. 2013, 13, 97–113. [Google Scholar] [CrossRef]
- Smyth, P.; Fayyad, U.; Burl, M.; Perona, P.; Baldi, P. Inferring Ground Truth from Subjective Labelling of Venus Images; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
Participant ID | Accuracy of 2 | Accuracy of 3 |
---|---|---|
1 | 0.5021 | |
2 | 0.2699 | |
3 | 0.3825 | |
4 | 0.6200 | |
5 | 0.6806 | |
6 | 0.7419 | |
8 | 0.5761 | |
9 | 0.8492 | |
10 | 0.6132 | |
11 | 0.8465 | |
12 | 0.7924 | |
13 | 0.6200 | |
14 | 0.5246 | |
15 | 0.6887 | |
16 | 0.5912 | |
17 | 0.6015 | |
18 | 0.5011 | |
20 | 0.7608 | |
21 | 0.7306 | |
22 | 0.7602 | |
23 | 0.1905 | |
24 | 0.3056 | |
25 | 0.9523 | |
26 | 0.2712 | |
27 | 0.5359 | |
Average | 0.5570 | 0.7211 |
Participant ID | Incidence of 2 | Incidence of 3 |
---|---|---|
1 | 0.1030 | |
2 | 0.0553 | |
3 | 0.0784 | |
4 | 0.1024 | |
5 | 0.1395 | |
6 | 0.1521 | |
8 | 0.1181 | |
9 | 0.1402 | |
10 | 0.1257 | |
11 | 0.1736 | |
12 | 0.1625 | |
13 | 0.1024 | |
14 | 0.0866 | |
15 | 0.1412 | |
16 | 0.1212 | |
17 | 0.1233 | |
18 | 0.1027 | |
20 | 0.1560 | |
21 | 0.1498 | |
22 | 0.1255 | |
23 | 0.0391 | |
24 | 0.0627 | |
25 | 0.1572 | |
26 | 0.0556 | |
27 | 0.1099 | |
Average | 0.1142 | 0.1190 |
Damage Types | Sample 1 | Sample 2 | Sample 3 | Sample 4 |
---|---|---|---|---|
1 | | | | |
2 | | | | |
3 | | | | |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Duan, J.; Liu, S.; Dai, Q.; Liu, W.; Ma, Y.; Guo, R.; Ma, C. Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake. Remote Sens. 2016, 8, 759. https://doi.org/10.3390/rs8090759
Xie S, Duan J, Liu S, Dai Q, Liu W, Ma Y, Guo R, Ma C. Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake. Remote Sensing. 2016; 8(9):759. https://doi.org/10.3390/rs8090759
Chicago/Turabian StyleXie, Shuai, Jianbo Duan, Shibin Liu, Qin Dai, Wei Liu, Yong Ma, Rui Guo, and Caihong Ma. 2016. "Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake" Remote Sensing 8, no. 9: 759. https://doi.org/10.3390/rs8090759
APA StyleXie, S., Duan, J., Liu, S., Dai, Q., Liu, W., Ma, Y., Guo, R., & Ma, C. (2016). Crowdsourcing Rapid Assessment of Collapsed Buildings Early after the Earthquake Based on Aerial Remote Sensing Image: A Case Study of Yushu Earthquake. Remote Sensing, 8(9), 759. https://doi.org/10.3390/rs8090759