A Scientometric Visualization Analysis for Night-Time Light Remote Sensing Research from 1991 to 2016
Abstract
:1. Introduction
2. Data and Materials
3. Methodology and Software
4. Results Analysis and Discussion
4.1. Basic Bibliometric Analysis
4.1.1. Yearly Publication Output
4.1.2. Average Number of Co-Authors
4.1.3. The Distribution of Journals
4.1.4. Main Research Countries
4.2. Core Research Communities
4.2.1. Co-Authorship in Social Network Analysis (SNA)
- Degree, in-degree (IDE), and out-degree (ODE): Degree can be defined as the total count of nodes connected to a target node in a network. In-degree is the number of nodes that are connected to a target node in a directed network. Out-degree is the number of nodes that are connected from a target node in a directed network. In our analysis, degree represents the number of co-authors connected to the target author; in-degree refers to the number of times a target author is a co-author but not the first author and out-degree represents the number of times when target author is a first author.
- Betweenness Centrality (BC) degree: The BC degree of a target node equals to the number of the shortest paths from all nodes to all nodes that pass through the target node. In our analysis, authors with high BC degree connect more sub-graphs of a co-author network. Removing these nodes (individual authors) from the network will result in graph partition.
- Closeness Centrality (CC) degree: CC degree is also based on the shortest paths. Different from BC degree, CC degree means the sum of the length of all shortest path from all nodes to all nodes that pass the target node. In our case, high CC degree refers to the author who is closer to various resources, thus more likely to undertake research in the future.
- Eigenvector Centrality (EC) degree: EC degree is designed to take care of the situation that traditional computation of degree does not consider who is connecting, because connection with important nodes will contribute more to the importance of the target node. EC assigns the relative degree to all nodes in the network instead of the original degree, therefore can reveal the real relative importance in term of the whole network.
- Clustering Coefficient (CCO): Clustering coefficient denotes the possibility of co-authors of an author collaborating with each other. It is also the basic characteristic of the small-world effect. Small world refers to the theory that every person is connected to every other person within six degrees of separation. A high CCO score suggests that collaboration is fixed within a small circle of researchers.
4.2.2. Data-Production Communities
4.2.3. Application-Oriented Communities
4.3. Important Research Topic and References
- Miller, S.D. (2012) cluster: In 2012, Miller, S.D. published a paper in the journal of PNAS. In this article, Miller, S.D. described a new NTL data source, the Suomi NPP satellite launched in 2011. This paper received high exposure with a wide audience of the journal PNAS. In addition, the new data source is a substantial improvement over the first generation of NTL data. DMSP/OLS is visible, the spatial accuracy, radiometric accuracy, and sensitivity have been enhanced by 45–88 times higher, 256 times finer, and about 10 times higher, respectively. The calibration is also improved from un-calibration to calibration on-board [38]. This cluster represents the latest research directions using the second generation of Suomi NPP VIIRS DNB dataset.
- Elvidge, C.D. (2009) cluster: In 2009, Elvidge, C.D. published two articles using NTL data, arguing that natural gas consumption reflects the economic development level of countries. One concerned mapping the global distributed natural gas consumption using the gas flare data extracted from NTL imagery [65]. The second proposed a new poverty index for describing the spatial-explicit development analysis, based on NTL data [66]. These both deployed the DMSP/OLS data to make a connection between nighttime lights and economic activities. The poverty index generated by NTL remote sensing has an advantage over GDP as captures spatial unevenness. Similar work was also conducted in the nodes like Doll’s work [67], who also produced a global economic activity map.
- Elvidge, C.D. (2007) cluster: The reference published in 2007 by Elvidge, C.D. is using the multiple source datasets to build up a global Impervious Surfaces Area (ISA) model, thus producing the global ISA distribution map [68]. Multiple source data include the coarse resolution imagery and the census data. ISA is the most common artifacts constructed by human and can be detected by the NTL remote sensing, such as roads, parking lots, etc. ISA data are ideally suited for analyzing the evolution paths of the country-level development, later studies on urbanization using ISA data are an extension on this work.
- Elvidge, C.D. (2013) cluster: In 2013, Elvidge, C.D. published two papers, one is to introduce the superior property of the NPP VIIRS data over the traditional DSMP/OLS data [69]. The other one is to build a night-fire map using the NPP VIIRS DNB dataset [70] and the quality of map can accurate to the level of sub-pixel. Similar work using the VIIRS DNB also emerge in Baugh’s work [71]. Li’s work is to use the NPP-VIIRS data to model the regional economic study of China [72]. Differently, Ma’s work still uses the DMSP/OLS data because of the long-term analysis demands, his work is also included in the cluster [7]. Therefore, most work of this cluster can be regarded as the VIIRS application related studies.
- Zhang, Q.L. (2011) cluster: In 2011, Zhang, Q.L. studied the global and regional urbanization using the multiple terms of DMSP/OLS dataset [73]. He also introduced an effective index for in the 2013 to depict the internal development level in the core cities, namely vegetation adjusted NTL urban index (VANUI) in reference [59]. Ma’s work of 2015 emerges in the cluster which studied the dynamic urbanization processes using the DMSP/OLS dataset [51]. Work of Elvidge, C.D. in 2012 also had a similar research topic and introduced a new index of Night Light Development Index (NLDI), which can be used to help depict the developing status of the cities or countries [64]. Zhou, Y. also proposed a clustering method for depicting the urban areas of a city [74]. We can conclude that this cluster is related to the topic of urbanization and city development issues.
4.4. Discipline-Level Interactions
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Elvidge, C.D.; Safran, J.; Tuttle, B.; Sutton, P.; Cinzano, P.; Pettit, D.; Arvesen, J.; Small, C. Potential for global mapping of development via a nightsat mission. GeoJournal 2007, 69, 45–53. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed]
- Blumenstock, J.; Cadamuro, G.; On, R. Predicting poverty and wealth from mobile phone metadata. Science 2015, 350, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Blumenstock, J.E. Fighting poverty with data. Science 2016, 353, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Lawrence, W.T.; Elvidge, C.D.; Paul, T.; Levine, E.; Privalsky, M.V.; Brown, V. Using nighttime DMSP/OLS images of city lights to estimate the impact of urban land use on soil resources in the united states. Remote Sens. Environ. 1997, 59, 105–117. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China's cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Hirsch, J.E. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. USA 2005, 102, 16569–16572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callon, M.; Courtial, J.-P.; Turner, W.A.; Bauin, S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983, 22, 191–235. [Google Scholar] [CrossRef]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Mali, F.; Kronegger, L.; Doreian, P.; Ferligoj, A. Dynamic scientific co-authorship networks. In Models of Science Dynamics; Springer: Berlin/Heidelberg, 2012; pp. 195–232. [Google Scholar]
- Tian, Y.; Wen, C.; Hong, S. Global scientific production on GIS research by bibliometric analysis from 1997 to 2006. J. Informetr. 2008, 2, 65–74. [Google Scholar] [CrossRef]
- Liu, C.; Gui, Q. Mapping intellectual structures and dynamics of transport geography research: A scientometric overview from 1982 to 2014. Scientometrics 2016, 109, 159–184. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, A.; Wang, K.; Liu, F.; Zeng, F.; Yang, L. Global trends in dem-related research from 1994 to 2013: A bibliometric analysis. Scientometrics 2015, 105, 347–366. [Google Scholar] [CrossRef]
- Li, L.; Liu, Y.; Zhu, H.; Ying, S.; Luo, Q.; Luo, H.; Kuai, X.; Xia, H.; Shen, H. A bibliometric and visual analysis of global geo-ontology research. Comput. Geosci. 2016, 99, 1–8. [Google Scholar] [CrossRef]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef]
- Garfield, E. From the science of science to scientometrics visualizing the history of science with histcite software. J. Informetr. 2009, 3, 173–179. [Google Scholar] [CrossRef]
- Lee, S.; Bozeman, B. The impact of research collaboration on scientific productivity. Soc. Stud. Sci. 2005, 35, 673–702. [Google Scholar] [CrossRef]
- Savic, M.; Ivanovic, M.; Radovanovic, M.; Ognjanovic, Z.; Pejovic, A.; Kruger, T.J. The structure and evolution of scientific collaboration in serbian mathematical journals. Scientometrics 2014, 101, 1805–1830. [Google Scholar] [CrossRef]
- Kernighan, B.W.; Lin, S. An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 1970, 49, 291–307. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994; Volume 8. [Google Scholar]
- Newman, M.E.; Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar] [CrossRef] [PubMed]
- Chinchillarodriguez, Z.; Ferligoj, A.; Miguel, S.; Kronegger, L.; De Moyaanegon, F. Blockmodeling of co-authorship networks in library and information science in argentina: A case study. Scientometrics 2012, 93, 699–717. [Google Scholar] [CrossRef] [Green Version]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the 3rd International AAAI Conference on Weblogs and Social Media (ICWSM), San Jose, CA, USA, 17–20 May 2009; Volume 8, pp. 361–362. [Google Scholar]
- Yan, D.; Zhao, Z.; Ng, W.; Liu, S. Probabilistic convex hull queries over uncertain data. IEEE Trans. Knowl. Data Eng. 2015, 27, 852–865. [Google Scholar] [CrossRef]
- Xie, P. Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics 2015, 105, 611–622. [Google Scholar] [CrossRef]
- Chen, C.; Morris, S. Visualizing evolving networks: Minimum spanning trees versus pathfinder networks. In Proceedings of the 2003 IEEE Symposium on Information Visualization (INFOVIS 2003), Seattle, WA, USA, 19–21 October 2003. [Google Scholar]
- Chen, C. Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Boyack, K. Using detailed maps of science to identify potential collaborations. Scientometrics 2008, 79, 27–44. [Google Scholar] [CrossRef]
- Börner, K.; Klavans, R.; Patek, M.; Zoss, A.M.; Biberstine, J.R.; Light, R.P.; Larivière, V.; Boyack, K.W. Design and update of a classification system: The UCSD map of science. PLoS ONE 2012, 7, e39464. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef]
- Li, D.; Li, X. An overview on data mining of nighttime light remote sensing. Acta Geod. Cartogr. Sin. 2015, 44, 591–601. [Google Scholar]
- Newman, M.E.J. Communities, modules and large-scale structure in networks. Nat. Phys. 2012, 8, 25–31. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.D.; Haddock, S.; Elvidge, C.; Lee, T. Twenty thousand leagues over the seas: The first satellite perspective on bioluminescent ‘milky seas’. Int. J. Remote Sens. 2006, 27, 5131–5143. [Google Scholar] [CrossRef]
- Miller, S.D.; Mills, S.P.; Elvidge, C.D.; Lindsey, D.T.; Lee, T.F.; Hawkins, J.D. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA 2012, 109, 15706–15711. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.D.; Straka, W.C.; Mills, S.; Elvidge, C.D.; Lee, T.F.; Solbrig, J.E.; Walther, A.; Heidinger, A.K.; Weiss, S. Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band. Remote Sens. 2013, 5, 6717–6766. [Google Scholar] [CrossRef]
- Cho, K.; Ito, R.; Shimoda, H.; Sakata, T. Technical note and cover fishing fleet lights and sea surface temperature distribution observed by DMSP/OLS sensor. Int. J. Remote Sens. 1999, 20, 3–9. [Google Scholar] [CrossRef]
- Straka, W.; Seaman, C.; Baugh, K.; Cole, K.; Stevens, E.; Miller, S.D. Utilization of the suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band for arctic ship tracking and fisheries management. Remote Sens. 2015, 7, 971–989. [Google Scholar] [CrossRef]
- Nghiem, S.; Balk, D.; Rodriguez, E.; Neumann, G.; Sorichetta, A.; Small, C.; Elvidge, C. Observations of urban and suburban environments with global satellite scatterometer data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 367–380. [Google Scholar] [CrossRef]
- Chand, T.R.K.; Badarinath, K.V.S.; Murthy, M.S.R.; Rajshekhar, G.; Elvidge, C.D.; Tuttle, B.T. Active forest fire monitoring in uttaranchal state, india using multi-temporal DMSP-OLS and modis data. Int. J. Remote Sens. 2007, 28, 2123–2132. [Google Scholar] [CrossRef]
- Chand, T.R.K.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial characterization of electrical power consumption patterns over india using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens. 2009, 30, 647–661. [Google Scholar] [CrossRef]
- Lee, S.; Chiang, K.; Xiong, X.; Sun, C.; Anderson, S. The S-NPP VIIRS day-night band on-orbit calibration/characterization and current state of SDR products. Remote Sens. 2014, 6, 12427–12446. [Google Scholar] [CrossRef]
- Lee, S.; Mcintire, J.; Oudrari, H.; Schwarting, T.; Xiong, X. A new method for SUOMI-NPP VIIRS day–night band on-orbit radiometric calibration. IEEE Trans. Geosci. Remote Sens. 2014, 53, 324–334. [Google Scholar]
- Lee, S.; Cao, C. Soumi NPP VIIRS day/night band stray light characterization and correction using calibration view data. Remote Sens. 2016, 8, 138. [Google Scholar] [CrossRef]
- Cao, C.; Shao, X.; Uprety, S. Detecting light outages after severe storms using the S-NPP/VIIRS day/night band radiances. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1582–1586. [Google Scholar] [CrossRef]
- Moyer, D.; Mcintire, J.; Oudrari, H.; Mccarthy, J.K.; Xiong, X.; De Luccia, F.J. JPSS-1 VIIRS pre-launch response versus scan angle testing and performance. Remote Sens. 2016, 8, 141. [Google Scholar] [CrossRef]
- Jing, X.; Shao, X.; Cao, C.; Fu, X.; Yan, L. Comparison between the suomi-NPP day-night band and DMSP-OLS for correlating socio-economic variables at the provincial level in China. Remote Sens. 2016, 8, 17. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Wang, N.; Liu, Q. Spatial differentiation and morphologic characteristics of China’s urban core zones based on geomorphologic partition. J. Appl. Remote Sens. 2017, 11, 016041. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, Y.; Zhou, C.; Haynie, S.; Pei, T.; Xu, T. Night-time light derived estimation of spatio-temporal characteristics of urbanization dynamics using DMSP/OLS satellite data. Remote Sens. Environ. 2015, 158, 453–464. [Google Scholar] [CrossRef]
- Xu, T.; Ma, T.; Zhou, C.; Zhou, Y. Characterizing spatio-temporal dynamics of urbanization in China using time series of DMSP/OLS night light data. Remote Sens. 2014, 6, 7708–7731. [Google Scholar] [CrossRef]
- Fan, J.; Ma, T.; Zhou, C.; Zhou, Y.; Xu, T. Comparative estimation of urban development in China’s cities using socioeconomic and DMSP/OLS night light data. Remote Sens. 2014, 6, 7840–7856. [Google Scholar] [CrossRef]
- Levin, N.; Zhang, Q. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 2017, 190, 366–382. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, B.; Thau, D.; Moore, R. Building a better urban picture: Combining day and night remote sensing imagery. Remote Sens. 2015, 7, 11887–11913. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Garz, S.; Kuechly, H.U.; De Miguel, A.S.; Zamorano, J.; Fischer, J.; Holker, F. High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sens. 2014, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Blake, S.; Dunlop, C.N.; Nandi, D.; Sharples, R.M.; Talbot, G.; Shanks, T.; Donoghue, D.N.M.; Galiatsatos, N.; Luke, P. New microslice technology for hyperspectral imaging. Remote Sens. 2013, 5, 1204–1219. [Google Scholar]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Zhuo, L.; Zheng, J.; Zhang, X.; Li, J.; Liu, L. An improved method of night-time light saturation reduction based on EVI. Int. J. Remote Sens. 2015, 36, 4114–4130. [Google Scholar] [CrossRef]
- Zhang, Q.; Schaaf, C.; Seto, K.C. The vegetation adjusted ntl urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sens. Environ. 2013, 129, 32–41. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Zhao, Y.; Xu, J.; Chen, F.; Li, H. Automatic intercalibration of night-time light imagery using robust regression. Remote Sens. Lett. 2012, 4, 45–54. [Google Scholar] [CrossRef]
- Li, X.Q.; Zhang, R.; Huang, C.; Li, D. Detecting 2014 northern Iraq insurgency using night-time light imagery. Int. J. Remote Sens. 2015, 36, 3446–3458. [Google Scholar] [CrossRef]
- Li, X.; Li, D. Can night-time light images play a role in evaluating the Syrian crisis? Int. J. Remote Sens. 2014, 35, 6648–6661. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T. The night light development index (NLDI): A spatially explicit measure of human development from satellite data. Soc. Geogr. 2012, 7, 23–35. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Doll, C.N.; Muller, J.-P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Elvidge, C.; Tuttle, B.; Sutton, P.; Baugh, K.; Howard, A.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Zhizhin, M.; Hsu, F.-C.; Baugh, K.E. VIIRS nightfire: Satellite pyrometry at night. Remote Sens. 2013, 5, 4423–4449. [Google Scholar] [CrossRef]
- Baugh, K.; Hsu, F.-C.; Elvidge, C.D.; Zhizhin, M. Nighttime lights compositing using the VIIRS day-night band: Preliminary results. Proc. Asia-Pac. Adv. Netw. 2013, 35, 70–86. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.M.; Imhoff, M.L. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008. [Google Scholar] [CrossRef]
- Jendryke, M.; Balz, T.; McClure, S.C.; Liao, M. Putting people in the picture: Combining big location-based social media data and remote sensing imagery for enhanced contextual urban information in Shanghai. Comput. Environ. Urban Syst. 2017, 62, 99–112. [Google Scholar] [CrossRef]
ID | Journal | Recs | TLCS | TGCS | JCR Ranking |
---|---|---|---|---|---|
1 | International Journal of Remote Sensing | 39 | 143 | 803 | 13 |
2 | Remote Sensing | 27 | 29 | 121 | 5 |
3 | Remote Sensing of Environment | 20 | 86 | 517 | 1 |
4 | Radio Science | 14 | 0 | 140 | 19 |
5 | Remote Sensing Letters | 8 | 15 | 64 | 15 |
6 | IEEE Transactions On Geoscience And Remote Sensing | 6 | 11 | 208 | 4 |
7 | IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing | 4 | 3 | 10 | 11 |
8 | International Journal of Applied Earth Observation And Geoinformation | 4 | 12 | 77 | 3 |
9 | Journal of Applied Remote Sensing | 3 | 0 | 1 | 24 |
10 | GIScience and Remote Sensing | 2 | 2 | 15 | 9 |
11 | IEEE Geoscience And Remote Sensing Letters | 2 | 6 | 12 | 10 |
12 | ISPRS Journal of Photogrammetry And Remote Sensing | 2 | 28 | 169 | 2 |
13 | Photogrammetric Engineering And Remote Sensing | 2 | 51 | 310 | 18 |
14 | Earth Observation And Remote Sensing | 1 | 0 | 0 | #N/A |
15 | International Journal of Digital Earth | 1 | 0 | 0 | 7 |
16 | ISPRS International Journal of Geo-Information | 1 | 0 | 0 | 26 |
Id | Country | Recs | TLCS | TGCS | Percentage |
---|---|---|---|---|---|
1 | USA | 76 | 306 | 1835 | 55.88% |
2 | China | 38 | 56 | 274 | 27.94% |
3 | Japan | 10 | 17 | 141 | 7.35% |
4 | Israel | 8 | 12 | 96 | 5.88% |
5 | Australia | 7 | 29 | 132 | 5.15% |
6 | India | 7 | 9 | 92 | 5.15% |
7 | UK | 6 | 6 | 67 | 4.41% |
8 | Italy | 4 | 22 | 120 | 2.94% |
9 | Brazil | 3 | 11 | 52 | 2.21% |
10 | Germany | 3 | 7 | 46 | 2.21% |
Id | Co-Author Groups/Research Community | Proportion | MCC | MPL |
---|---|---|---|---|
1 | Elvidge, C.D., Miller S.D. | 18.43% | 0.37 | 3.507 |
2 | Lee, S.H., Cao, C.Y. | 4.27% | 0.27 | 2.801 |
3 | Ma, T., Zhou, C.H. | 2.92% | 0.567 | 2.397 |
4 | Levin, N., Zhang, Q.L. | 2.25% | 0 | 2.133 |
5 | Kyba, C., Kuechly, H. | 2.25% | 0.567 | 1.956 |
6 | Centent, R. | 2.25% | 0 | 1.8 |
7 | Zhuo, L. | 2.02% | 0 | 1.778 |
8 | Li, X. | 2.02% | 0 | 1.778 |
Total | Total co-author network | 1 | 0.176 | 3.329 |
Author | IDE | ODE | Degree | CC | BC | EC | CCO |
---|---|---|---|---|---|---|---|
Elvidge, C.D. | 10.00 | 23.00 | 33.00 | 0.52 | 0.86 | 1.00 | 0.02 |
Miller, S.D. | 5.00 | 11.00 | 16.00 | 0.41 | 0.38 | 0.41 | 0.03 |
Baugh, K. | 0.00 | 4.00 | 4.00 | 0.39 | 0.24 | 0.23 | 0.17 |
Henderson, M. | 3.00 | 0.00 | 3.00 | 0.30 | 0.20 | 0.07 | 0.33 |
Gong, P. | 0.00 | 9.00 | 9.00 | 0.24 | 0.17 | 0.07 | 0.03 |
Feng, D. | 0.00 | 6.00 | 6.00 | 0.36 | 0.09 | 0.25 | 0.13 |
Straka, W.C. | 0.00 | 5.00 | 5.00 | 0.36 | 0.07 | 0.24 | 0.10 |
Nghiem, S.V. | 2.00 | 0.00 | 2.00 | 0.35 | 0.07 | 0.17 | 0.00 |
Chand, T.R.K. | 2.00 | 4.00 | 6.00 | 0.36 | 0.06 | 0.24 | 0.20 |
Imhoff, M.L. | 0.00 | 5.00 | 5.00 | 0.32 | 0.05 | 0.15 | 0.10 |
Author | IDE | ODE | Degree | CC | BC | EC | CCO |
---|---|---|---|---|---|---|---|
Lee, S.H. | 0 | 8 | 8 | 0.56 | 0.73 | 1.00 | 0.00 |
Cao, C.Y. | 3 | 3 | 6 | 0.51 | 0.58 | 0.99 | 0.20 |
Moyer, D. | 0 | 5 | 5 | 0.35 | 0.23 | 0.48 | 0.00 |
Jing, X. | 0 | 4 | 4 | 0.38 | 0.22 | 0.55 | 0.17 |
Mcintire, J. | 2 | 0 | 2 | 0.42 | 0.08 | 0.43 | 0.00 |
Oudrari, H. | 2 | 0 | 2 | 0.42 | 0.08 | 0.43 | 0.00 |
Xiong, X.X. | 2 | 0 | 2 | 0.42 | 0.08 | 0.43 | 0.00 |
Shao, X. | 3 | 0 | 3 | 0.38 | 0.01 | 0.60 | 0.67 |
Qiu, S. | 0 | 3 | 3 | 0.36 | 0.00 | 0.58 | 0.67 |
Author | IDE | ODE | Degree | CC | BC | EC | CCO |
---|---|---|---|---|---|---|---|
Zhao, M. | 0.00 | 5.00 | 5.00 | 0.52 | 0.58 | 0.33 | 0.00 |
Zhou, C.H. | 4.00 | 0.00 | 4.00 | 0.60 | 0.53 | 0.78 | 0.50 |
Ma, T. | 2.00 | 7.00 | 9.00 | 0.57 | 0.48 | 1.00 | 0.24 |
Fan, J.F. | 1.00 | 4.00 | 5.00 | 0.50 | 0.03 | 0.84 | 0.83 |
Xu, T. | 2.00 | 3.00 | 5.00 | 0.50 | 0.03 | 0.84 | 0.83 |
NTL Data Source | NTL Applications Exhibited by Our Identified Research Communities | Research Teams |
---|---|---|
DMSP/OLS | human activities; economic activities; power supply/consumption; war in Syria | Elvidge, C.D., Miller, S.D. (USA); Lee, S.H., Cao, C.Y. (USA), Li, X. (China); |
urbanization in China; geomorphic and urbanization; balance problem in urbanization; quantitative stages for urbanization | Ma, T., Zhou, C.H. (China); Levin, N., Zhang, Q.L. (China); Zhuo, L. (China) | |
bioluminescence in the sea; fleet detecting; wildfire | Elvidge, C.D., Miller, S.D. (USA) | |
VIIRS/DNB | fleet detecting | Elvidge, C.D., Miller, S.D. (USA) |
global urbanization; urbanization in China | Levin, N., Zhang, Q.L. (USA); Zhuo, L. (China) |
Application/Topic/Keyword | Collected by the Other Review [17,38] | Discipline Background (WoS Classifications) | |
---|---|---|---|
I | human activities, power supply/consumption, war in Syria | Settlement dynamics and impacts on the environment: Urban land dynamics; Impacts of urbanization on soil, net primary productivity, urban surface temperature and surface air temperature | Political science, Environmental science, Geosciences, Multidisciplinary |
economic activities, long-term urbanization in China, geomorphic and urbanization, quantitative stages for urbanization, gas flares, poverty index, ISA distributions, VANUI, NLDI | Demographic and socioeconomic information: population, urban population, population density, “ambient population”; Socioeconomic parameters: GDP, freight traffic, copper stock, poverty index, per capital income; Energy and electric power consumption | Geology, Demography, Economic statistics, Geography | |
bioluminescence in the sea, fleet detecting, wildfire | Short-term light monitoring: aerosol properties and forest fire, gas flare, burning area and light flash; Fishing vessel monitoring | Chemistry, Analytical | |
natural gas consumptions, balance problem in urbanization | Other applications: Anthropogenic gas emission (CO2); Nighttime sky brightness and light pollution; Other topics: human health, water footprint and virtual water, wars and conflicts, scaling law of city size, biolumine phenomena, coral reef stress, bird foraging, earthquake damage, ecosystem services, and climate station classification | Public, Environmental and Occupational Health, Tropical Medicine | |
II | Global urbanization | The Cryosphere: Mid-Latitude Snow Fields; Sea Ice Edge and Extent | Ecology, Geology |
fleet detecting | The Hydrosphere: Sea Surface Roughness Properties via Moon Glint; Coastal Waters Turbidity | Water Resources, Transportation | |
global urbanization, urbanization in China, regional economics, night-fire maps | The Lithosphere: Soil Moisture; Volcanoes—Ash Plumes and Pyroclastic Flows; Wind-Lofted Dust | Electrical and Electronic, Environmental science | |
The Atmosphere: Cloud Optical Properties; Lightning; Tropical Cyclones | Atmospheric Sciences, Optics | ||
The Biosphere: City Lights and Power Outages; Ship Lights; Biomass Burning | Environmental Studies | ||
Atmospheric Light Sources: Aurora; Nightglow | Atmospheric Sciences |
Topic Search | SCIE | SSCI | SSCI/SCIE |
---|---|---|---|
Remote sensing | 53,495 | 2706 | 0.05 |
NTL remote sensing | 136 | 15 | 0.11 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, K.; Qi, K.; Guan, Q.; Wu, C.; Yu, J.; Qing, Y.; Zheng, J.; Wu, H.; Li, X. A Scientometric Visualization Analysis for Night-Time Light Remote Sensing Research from 1991 to 2016. Remote Sens. 2017, 9, 802. https://doi.org/10.3390/rs9080802
Hu K, Qi K, Guan Q, Wu C, Yu J, Qing Y, Zheng J, Wu H, Li X. A Scientometric Visualization Analysis for Night-Time Light Remote Sensing Research from 1991 to 2016. Remote Sensing. 2017; 9(8):802. https://doi.org/10.3390/rs9080802
Chicago/Turabian StyleHu, Kai, Kunlun Qi, Qingfeng Guan, Chuanqing Wu, Jingmin Yu, Yaxian Qing, Jie Zheng, Huayi Wu, and Xi Li. 2017. "A Scientometric Visualization Analysis for Night-Time Light Remote Sensing Research from 1991 to 2016" Remote Sensing 9, no. 8: 802. https://doi.org/10.3390/rs9080802
APA StyleHu, K., Qi, K., Guan, Q., Wu, C., Yu, J., Qing, Y., Zheng, J., Wu, H., & Li, X. (2017). A Scientometric Visualization Analysis for Night-Time Light Remote Sensing Research from 1991 to 2016. Remote Sensing, 9(8), 802. https://doi.org/10.3390/rs9080802