Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery
2.3. Pre-Processing Stages of Satellite Image Data
2.3.1. Radiometric Calibration of Sensors
2.3.2. Atmospheric Correction
2.3.3. Enhancement of Spatial Resolution through Image Fusion and Supplementary Pre-Processing Techniques
2.4. Classification Method
2.5. Accuracy Assessment
3. Results and Discussion
3.1. Comparison of Spectral Signatures across LULC Classes
3.2. Accuracy Assessment of Classification for Pleiades-1A and SPOT-6 Images
3.3. Coverage and Spatial Distribution of Areas Classed as SSM Relative to other LULC Classes
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hentschel, T.; Hruschka, F.; Priester, M. Global Report on Artisanal & Small-Scale Mining; International Institute for Environment and Development: London, UK, 2002; pp. 3–64. [Google Scholar]
- Sousa, R.; Veiga, M.; Meech, J.; Jokinen, J.; Sousa, A. A Simplified Matrix of Environmental Impacts to Support an Intervention Program in a Small-Scale Mining Site. J Clean Prod. 2011, 19, 580–587. [Google Scholar] [CrossRef]
- Labonne, B. Commentary: Harnessing Mining for Poverty Reduction, Especially in Africa. Nat. Resour. Forum 2002, 26, 69–73. [Google Scholar] [CrossRef]
- Hilson, G. The Socio-Economic Impacts of Artisanal and Small-Scale Mining in Developing Countries; Taylor & Francis: Lisse, The Netherlands, 2003; ISBN 978-0-203-97128-4. [Google Scholar]
- Cordy, P.; Veiga, M.; Salih, I.; Al-Saadi, S.S.; Garcia, O.; Mesa, L.A.; Velasquez-Lopez, P.; Roeser, M. Mercury Contamination from Artisanal Gold Mining in Antioquia, Colombia: The World’s Highest per Capita Mercury Pollution. Sci. Total Environ. 2011, 410–411, 154–160. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, N.; Bulovic, N.; Cane, I.; McKenna, P. A Multi-Disciplinary Approach to Understanding the Impacts of Mines on Traditional Uses of Water in Northern Mongolia. Sci. Total Environ. 2016, 404–414, 557–558. [Google Scholar] [CrossRef] [PubMed]
- Telmer, K.; Stapper, D. Evaluating and Monitoring Small Scale Gold Mining and Mercury Use: Building a Knowledge-Base with Satellite Imagery and Field Work; Aqueous Geochemistry Laboratory, School of Earth and Ocean Sciences, University of Victoria: Victoria, Canada, 2007; pp. 1–48. [Google Scholar]
- Goward, S.; Masek, J.; Williams, D.; Irons, J.; Thompson, R.J. The Landsat 7 Mission: Terrestrial Research and Applications for the 21st Century. Remote Sens. Environ. 2001, 78, 3–12. [Google Scholar] [CrossRef]
- Luethje, F.; Kranz, O.; Schoepfer, E. Geographic Object-Based Image Analysis Using Optical Satellite Imagery and GIS Data for the Detection of Mining Sites in the Democratic Republic of Congo. Remote Sens. 2014, 6, 6636–6661. [Google Scholar] [CrossRef] [Green Version]
- Myint, S.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-Pixel vs. Object-Based Classification of Urban Land Cover Extraction Using High Spatial Resolution Imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Huang, C.; Davis, L.S.; Townshend, J.R.G. An Assessment of Support Vector Machine for Land Cover Classification. Int. J. Remote Sens. 2002, 23, 725–749. [Google Scholar] [CrossRef]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef]
- Tzotsos, A.; Argialas, D. Support Vector Machine Classification for Object-Based Image Analysis. In Object-Based Image Analysis; Springer: Heidelberg/Berlin, Germany, 2008; pp. 663–677. [Google Scholar]
- Duro, D.; Franklin, S.; Dube, M. A Comparison of Pixel-Based and Object-Based Image Analysis with Selected Machine Learning Algorithms for the Classification of Agricultural Landscapes Using SPOT-5 HRG Imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Lin, C.; Wu, C.-C.; Tsogt, K.; Ouyang, Y.-C.; Chang, C.-I. Effects of Atmospheric Correction and Pansharpening on LULC Classification Accuracy Using WorldView-2 Imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Postelniak, A. Geometric Potential of Pleiades-1A Satellite Imagery. GeoSci. Eng. 2014, 60, 19–27. [Google Scholar] [CrossRef]
- Geometric Distortion in Imagery, 2015. Natural Resources Canada. Available online: http://www.nrcan.gc.ca/node/9401 (accessed on 15 May 2017).
- Dave, C.P.; Joshi, R.; Srivastava, S. A Survey on Geometric Correction of Satellite Imagery. Int. J. Comput. Appl. 2015, 116, 24–27. [Google Scholar]
- Astrium. Pleiades Imagery User Guide; Astrium: Paris, France, 2012. [Google Scholar]
- Astrium. SPOT 6 & SPOT 7 Imagery User Guide; Astrium: Paris, France, 2013. [Google Scholar]
- Chander, G.; Markham, B.; Helder, D. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Gebreslasie, M.T.; Ahmed, F.B.; van Aardt, J. Image-Based Reflectance Conversion of ASTER and IKONOS Imagery as Precursor to Structural Assessment of Plantation Forests in KwaZulu-Natal, South Africa. South. For. 2010, 71, 259–265. [Google Scholar] [CrossRef]
- Converting between Julian Dates and Gregorian Calendar Dates, 2016. Astronomical Applications Department of the U.S. Naval Observatory. Available online: http://aa.usno.navy.mil/data/docs/JulianDate.php (accessed on 15 May 2017).
- Zinnert, J.; Shiflett, S.; Via, S.; Bisset, S.; Dows, B.; Manley, P.; Young, D. Spatial-Temporal Dynamics in Barrier Island Upland Vegetation: The Overlooked Coastal Landscape. Ecosystems 2016, 19, 685–697. [Google Scholar] [CrossRef]
- Moses, W.; Gitelson, A.; Perk, R.; Gurlin, D.; Rundquist, D.; Leavitt, B.; Barrow, T.; Brakhage, P. Estimation of Chlorophyll-a Concentration in Turbid Productive Waters Using Airborne Hyperspectral Data. Water Res. 2012, 46, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Vibhute, A.; Kale, K.; Dhumal, R.; Mehrotra, S. Hyperspectral Imaging Data Atmospheric Correction Challenges and Solutions Using QUAC and FLAASH Algorithms; IEEE: Bhubaneswar, India, 2016. [Google Scholar]
- Adler-Golden, S.; Bernstein, L.; Matthew, M.; Sundberg, R. Atmospheric Compensation of Extreme Off-Nadir Hyperspectral Imagery from Hyperion. In Proceedings of the SPIE 6565, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, Orlando, FL, USA, 5 July 2007; Volume 65651P. [Google Scholar]
- Bernstein, L.; Jin, X.; Gregor, B.; Adler-Golden, S. Quick Atmospheric Correction Code: Algorithm Description and Recent Upgrades. Opt. Eng. 2012, 51. [Google Scholar] [CrossRef]
- Sun, W.; Chen, B.; Messinger, D. Nearest-Neighbor Diffusion-Based Pan-Sharpening Algorithm for Spectral Images. Opt. Eng. 2014, 53. [Google Scholar] [CrossRef]
- Jin, X. Segmentation-Based Image Processing System. U.S. Patent No. 8,260,048, 4 September 2012. [Google Scholar]
- Robinson, D.; Redding, N.; Crisp, D. Implementation of a Fast Algorithm for Segmenting SAR Imagery; DSTO Electronics and Surveillance Research Laboratory: Edinburgh, SA, Australia, 2002. [Google Scholar]
- Jensen, J. Thematic Information Extraction: Image Classification. In Introductory Digital Image Processing: A Remote Sensing Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 1996; pp. 197–256. [Google Scholar]
- Story, M.; Congalton, R. Accuracy Assessment: A User’s Perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Olofsson, P.; Foody, G.; Stehman, S.; Woodcock, C. Making Better Use of Accuracy Data in Land Change Studies: Estimate Accuracy and Area and Quantifying Uncertainty Using Stratified Estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
Scene | Sensor | ||||||||
---|---|---|---|---|---|---|---|---|---|
Satellite | Acquisition Date | Sensor Angle (Degrees) | Cloud Cover (%) | Band | Designation | Wavelength (μm) | Spatial Resolution (m) | ||
Pleiades-1A | 20 March 2013 | 23.74 | 1.2 | 1 | Blue | 0.43 | – | 0.55 | 2 |
5 May 2014 | 4.89 | 1 | 2 | Green | 0.50 | – | 0.62 | 2 | |
3 | Red | 0.59 | – | 0.71 | 2 | ||||
4 | Near-Infrared | 0.74 | – | 0.94 | 2 | ||||
5 | Panchromatic | 0.47 | – | 0.83 | 0.5 | ||||
SPOT-6 | 6 Jane 2016 | 11.93 | 2 | 1 | Blue | 0.46 | – | 0.53 | 6 |
2 | Green | 0.53 | – | 0.59 | 6 | ||||
3 | Red | 0.63 | – | 0.70 | 6 | ||||
4 | Near-Infrared | 0.76 | – | 0.89 | 6 | ||||
5 | Panchromatic | 0.46 | – | 0.75 | 1.5 |
Classes | Training Data | Description | |||||
---|---|---|---|---|---|---|---|
2013 | 2014 | 2016 | |||||
Segment | Coverage (% of Catchment) | Segment | Coverage (% of Catchment) | Segment | Coverage (% of Catchment) | ||
Forest | 1131 | 1.37 | 1156 | 1.88 | 491 | 2.15 | Includes all types of trees in the catchment |
Grassland | 463 | 2.71 | 267 | 1.71 | 252 | 2.40 | Vegetated areas that do not contain any trees or shrubs |
Cultivated area | 228 | 0.88 | 224 | 0.88 | 212 | 1.41 | Agricultural lands |
Open land | 186 | 0.81 | 382 | 1.60 | 214 | 1.57 | Mixture of trees, shrubs, and newly burned/ cut forest timbers |
Large-scale mine | 399 | 1.52 | 813 | 1.35 | 188 | 1.81 | Open-pit mine and other natural mine components such as haulage roads, stockpile areas and motor pool open wash bays |
Tailings Storage Facility | 13 | 0.05 | 40 | 0.36 | 25 | 0.04 | Mine tailings dam |
Small-scale mine (SSM) | 108 | 0.13 | 405 | 0.19 | 47 | 0.16 | Includes all possible active mine sites in use for hydraulic mining, gold panning, and underground mining and improvised rough roads within the SSM |
Road system/Vacant lot | 412 | 0.38 | 822 | 0.38 | 293 | 0.46 | Includes the municipal road, access areas and vacant lots surrounding each house in the local community, access to mine facilities and camp site |
Built-up | 171 | 0.05 | 229 | 0.09 | 214 | 0.09 | House, buildings, and mineral processing facilities |
Stream network | 226 | 0.15 | 157 | 0.11 | 69 | 0.14 | Clear water, highly turbid water and riverbanks |
TOTAL | 3337 | 8.05 | 4495 | 8.56 | 2005 | 10.23 |
(a) 2013 Pleiades-A | Ground Truth Classification | Total | UA (%) | ||||||||||
F | GL | CA | OL | LSM | TSF | SSM | RS | BU | SN | ||||
OB-SVM CLASSIFICATION | F | 75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 100 |
GL | 4 | 68 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 91 | |
CA | 4 | 14 | 55 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 73 | |
OL | 1 | 0 | 2 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 96 | |
LSM | 0 | 0 | 1 | 0 | 71 | 0 | 0 | 3 | 0 | 0 | 75 | 95 | |
TSF | 0 | 0 | 0 | 0 | 0 | 75 | 0 | 0 | 0 | 0 | 75 | 100 | |
SSM | 0 | 1 | 6 | 2 | 3 | 0 | 57 | 6 | 0 | 0 | 75 | 76 | |
RS | 0 | 0 | 0 | 0 | 6 | 0 | 5 | 59 | 0 | 5 | 75 | 79 | |
BU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 73 | 2 | 75 | 97 | |
SN | 0 | 0 | 4 | 0 | 0 | 0 | 1 | 11 | 0 | 59 | 75 | 79 | |
TOTAL | 84 | 83 | 71 | 76 | 80 | 75 | 63 | 79 | 73 | 66 | 750 | ||
PA (%) | 89 | 82 | 77 | 95 | 89 | 100 | 90 | 75 | 100 | 89 | |||
(b) 2014 Pleiades-1A | Ground Truth Classification | Total | UA (%) | ||||||||||
F | GL | CA | OL | LSM | TSF | SSM | RS | BU | SN | ||||
OB-SVM CLASSIFICATION | F | 74 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 99 |
GL | 2 | 71 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 95 | |
CA | 0 | 16 | 52 | 5 | 0 | 0 | 0 | 2 | 0 | 0 | 75 | 69 | |
OL | 1 | 1 | 4 | 66 | 2 | 0 | 0 | 1 | 0 | 0 | 75 | 88 | |
LSM | 0 | 0 | 0 | 0 | 73 | 0 | 1 | 1 | 0 | 0 | 75 | 97 | |
TSF | 0 | 0 | 0 | 0 | 6 | 69 | 0 | 0 | 0 | 0 | 75 | 92 | |
SSM | 0 | 0 | 2 | 5 | 5 | 0 | 52 | 11 | 0 | 0 | 75 | 69 | |
RS | 0 | 0 | 2 | 1 | 9 | 0 | 3 | 60 | 0 | 0 | 75 | 80 | |
BU | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 74 | 0 | 75 | 99 | |
SN | 2 | 0 | 4 | 7 | 0 | 0 | 0 | 4 | 0 | 58 | 75 | 77 | |
TOTAL | 79 | 89 | 66 | 84 | 96 | 69 | 56 | 79 | 74 | 58 | 750 | ||
PA (%) | 94 | 80 | 79 | 79 | 76 | 100 | 93 | 76 | 100 | 100 | |||
(c) 2016 SPOT-6 | Ground Truth Classification | Total | UA (%) | ||||||||||
F | GL | CA | OL | LSM | TSF | SSM | RS | BU | SN | ||||
OB-SVM CLASSIFICATION | F | 75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 100 |
GL | 5 | 70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 75 | 93 | |
CA | 2 | 2 | 57 | 9 | 0 | 0 | 1 | 4 | 0 | 0 | 75 | 76 | |
OL | 0 | 1 | 2 | 66 | 2 | 0 | 0 | 4 | 0 | 0 | 75 | 88 | |
LSM | 0 | 0 | 0 | 0 | 75 | 0 | 0 | 0 | 0 | 0 | 75 | 100 | |
TSF | 0 | 0 | 0 | 0 | 2 | 73 | 0 | 0 | 0 | 0 | 75 | 97 | |
SSM | 0 | 0 | 6 | 0 | 10 | 0 | 52 | 7 | 0 | 0 | 75 | 69 | |
RS | 0 | 0 | 1 | 1 | 10 | 0 | 1 | 59 | 0 | 3 | 75 | 79 | |
BU | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 73 | 0 | 75 | 97 | |
SN | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 71 | 75 | 95 | |
TOTAL | 82 | 73 | 66 | 76 | 101 | 73 | 54 | 78 | 73 | 74 | 750 | ||
PA (%) | 91 | 96 | 86 | 87 | 74 | 100 | 96 | 76 | 100 | 96 |
Land Use and Land Cover Features | 2013 | 2014 | 2015 | ||||||
---|---|---|---|---|---|---|---|---|---|
Classified Area (km2) | Bias-Adjusted Area (km2) | Margin of Error (±km2) | Classified Area (km2) | Bias-Adjusted Area (km2) | Margin of Error (±km2) | Classified Area (km2) | Bias-Adjusted Area (km2) | Margin of Error (±km2) | |
Forest | 24.29 | 24.91 | 0.53 | 22.33 | 22.31 | 0.69 | 23.13 | 23.80 | 0.56 |
Grassland | 10.13 | 9.40 | 0.69 | 8.82 | 8.95 | 0.77 | 9.54 | 8.96 | 0.56 |
Cultivated area | 1.12 | 1.29 | 0.48 | 1.23 | 1.30 | 0.40 | 1.26 | 1.02 | 0.07 |
Open land | 1.13 | 1.12 | 0.07 | 3.31 | 3.03 | 0.26 | 1.70 | 1.65 | 0.13 |
Large-scale mine | 1.49 | 1.46 | 0.09 | 2.01 | 2.17 | 0.16 | 2.06 | 2.23 | 0.09 |
Tailings Storage Facility | 0.07 | 0.07 | 0 | 0.26 | 0.24 | 0.02 | 0.45 | 0.43 | 0.02 |
Small-scale mine | 0.07 | 0.09 | 0.03 | 0.09 | 0.12 | 0.07 | 0.08 | 0.08 | 0.02 |
Road system/ Vacant lot | 0.58 | 0.55 | 0.09 | 0.80 | 0.77 | 0.14 | 0.70 | 0.72 | 0.11 |
Built-up | 0.17 | 0.17 | 0.01 | 0.18 | 0.18 | 0.01 | 0.18 | 0.18 | 0.01 |
Stream network | 0.20 | 0.20 | 0.04 | 0.22 | 0.17 | 0.02 | 0.15 | 0.17 | 0.03 |
TOTAL | 39.25 | 39.25 | 39.25 | 39.25 | 39.25 | 39.25 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isidro, C.M.; McIntyre, N.; Lechner, A.M.; Callow, I. Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region. Remote Sens. 2017, 9, 945. https://doi.org/10.3390/rs9090945
Isidro CM, McIntyre N, Lechner AM, Callow I. Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region. Remote Sensing. 2017; 9(9):945. https://doi.org/10.3390/rs9090945
Chicago/Turabian StyleIsidro, Celso M., Neil McIntyre, Alex M. Lechner, and Ian Callow. 2017. "Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region" Remote Sensing 9, no. 9: 945. https://doi.org/10.3390/rs9090945
APA StyleIsidro, C. M., McIntyre, N., Lechner, A. M., & Callow, I. (2017). Applicability of Earth Observation for Identifying Small-Scale Mining Footprints in a Wet Tropical Region. Remote Sensing, 9(9), 945. https://doi.org/10.3390/rs9090945