A Rigorously-Weighted Spatiotemporal Fusion Model with Uncertainty Analysis
Abstract
:1. Introduction
2. Methods
2.1. Theoretical Basis
2.2. Weighting via Ordinary Kriging
2.3. Process of the RWSTFM Implementation
2.4. Evaluation Indices
3. Study Area and Datasets
4. Experiments and Discussion
4.1. Test Using the First Dataset to Detect Phenological Changes
4.2. Test Using the Second Dataset to Detect Land Cover Changes
4.3. Test Using the Third Dataset to Detect Both Phenological Changes and Land Cover Changes
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Lansing, J.C. The Landsat Sensors Status, Application, and Plans. J. Imaging Technol. 1987, 13, 191–195. [Google Scholar]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1088–1100. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.L.; Wei, X.Q.; Yao, Y.J.; Su, Y.R.; Jiang, B.; Wang, X.X. Land Cover Classification of Landsat Data with Phenological Features Extracted from Time Series MODIS NDVI Data. Remote Sens. 2014, 6, 11518–11532. [Google Scholar] [CrossRef]
- Walker, J.; de Beurs, K.; Wynne, R. Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes. Remote Sens. 2015, 7, 10832–10855. [Google Scholar] [CrossRef]
- Zhang, B.H.; Zhang, L.; Xie, D.; Yin, X.L.; Liu, C.J.; Liu, G. Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation. Remote Sens. 2016, 8, 10. [Google Scholar] [CrossRef]
- Knauer, K.; Gessner, U.; Fensholt, R.; Kuenzer, C. An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes. Remote Sens. 2016, 8, 425. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H.K.; Song, H.H.; Wang, J.; Song, C.Q. Unified fusion of remote-sensing imagery: Generating simultaneously high-resolution synthetic spatialtemporalspectral earth observations. Remote Sens. Lett. 2013, 4, 561–569. [Google Scholar] [CrossRef]
- Addesso, P.; Longo, M.; Restaino, R.; Vivone, G. Sequential Bayesian Methods for Resolution Enhancement of TIR Image Sequences. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 233–243. [Google Scholar] [CrossRef]
- Mercier, G.; Hubert-Moy, L.; Houet, T.; Gouery, P. Estimation and monitoring of bare soil/vegetation ratio with SPOT VEGETATION and HRVIR. IEEE Trans. Geosci. Remote Sens. 2005, 43, 348–354. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Mokhtari, M.H.; Shamsi, S.R.F.; Niazi, Y. A wavelet-artificial intelligence fusion approach (WAIFA) for blending Landsat and MODIS surface temperature. Remote Sens. Environ. 2015, 169, 243–254. [Google Scholar] [CrossRef]
- Laporterie-Dejean, F.; Flouzat, G.; Lopez-Ornelas, E. Multitemporal and multiresolution fusion of wide field of view and high spatial resolution images through morphological pyramid. Image Signal Process. Remote Sens. 2004, 5573, 52–63. [Google Scholar]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sens. Environ. 2009, 113, 1613–1627. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Zhang, W.; Li, A.N.; Jin, H.A.; Bian, J.H.; Zhang, Z.J.; Lei, G.B.; Qin, Z.H.; Huang, C.Q. An Enhanced Spatial and Temporal Data Fusion Model for Fusing Landsat and MODIS Surface Reflectance to Generate High Temporal Landsat-Like Data. Remote Sens. 2013, 5, 5346–5368. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, M.S.; Shi, W.Z.; Wu, L.X.; Qin, K. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm. Remote Sens. 2015, 7, 4424–4441. [Google Scholar] [CrossRef]
- Rao, Y.H.; Zhu, X.L.; Chen, J.; Wang, J.M. An Improved Method for Producing High Spatial-Resolution NDVI Time Series Datasets with Multi-Temporal MODIS NDVI Data and Landsat TM/ETM plus Images. Remote Sens. 2015, 7, 7865–7891. [Google Scholar] [CrossRef]
- Doxani, G.; Mitraka, Z.; Gascon, F.; Goryl, P.; Bojkov, B.R. A Spectral Unmixing Model for the Integration of Multi-Sensor Imagery: A Tool to Generate Consistent Time Series Data. Remote Sens. 2015, 7, 14000–14018. [Google Scholar] [CrossRef]
- Amorós-López, J.; Gómez-Chova, L.; Alonso, L.; Guanter, L.; Zurita-Milla, R.; Moreno, J.; Camps-Valls, G. Multitemporal fusion of Landsat/TM and ENVISAT/MERIS for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 132–141. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H. Spatio-temporal reflectance fusion via unmixing: Accounting for both phenological and land-cover changes. Int. J. Remote Sens. 2014, 35, 6213–6233. [Google Scholar] [CrossRef]
- Wu, M.; Wu, C.; Huang, W.; Niu, Z.; Wang, C.; Li, W.; Hao, P. An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery. Inf. Fusion 2016, 31, 14–25. [Google Scholar] [CrossRef]
- Wu, M.Q.; Niu, Z.; Wang, C.Y.; Wu, C.Y.; Wang, L. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. J. Appl. Remote Sens. 2012, 6. [Google Scholar] [CrossRef]
- Zhu, X.L.; Helmer, E.H.; Gao, F.; Liu, D.S.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Huang, B.; Song, H.H. Spatiotemporal Reflectance Fusion via Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3707–3716. [Google Scholar] [CrossRef]
- Song, H.H.; Huang, B. Spatiotemporal Satellite Image Fusion Through One-Pair Image Learning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1883–1896. [Google Scholar] [CrossRef]
- Wu, B.; Huang, B.; Zhang, L.P. An Error-Bound-Regularized Sparse Coding for Spatiotemporal Reflectance Fusion. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6791–6803. [Google Scholar] [CrossRef]
- Matheron, G. Kriging or Polynomial Interpolation Procedures—A Contribution to Polemics in Mathematical Geology. Can. Min. Metall. Bull. 1967, 60, 240–244. [Google Scholar]
- Odeh, I.O.A.; Mcbratney, A.B.; Chittleborough, D.J. Further Results on Prediction of Soil Properties from Terrain Attributes—Heterotopic Cokriging and Regression-Kriging. Geoderma 1995, 67, 215–226. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Haylock, M.R.; Hofstra, N.; Tank, A.M.G.K.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Pardo-Iguzquiza, E.; Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Atkinson, P.M. Image fusion by spatially adaptive filtering using downscaling cokriging. ISPRS J. Photogramm. Remote Sens. 2011, 66, 337–346. [Google Scholar] [CrossRef]
- Sales, M.H.R.; Souza, C.M.; Kyriakidis, P.C. Fusion of MODIS Images Using Kriging With External Drift. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2250–2259. [Google Scholar] [CrossRef]
- Wang, Q.M.; Shi, W.Z.; Atkinson, P.M.; Pardo-Iguquiza, E. A New Geostatistical Solution to Remote Sensing Image Downscaling. IEEE Trans. Geosci. Remote Sens. 2016, 54, 386–396. [Google Scholar] [CrossRef]
- Wang, Q.M.; Shi, W.Z.; Li, Z.B.; Atkinson, P.M. Fusion of Sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef]
- Yamamoto, J.K. An alternative measure of the reliability of ordinary kriging estimates. Math. Geol. 2000, 32, 489–509. [Google Scholar] [CrossRef]
- Lloyd, C.D.; Atkinson, P.M. Assessing uncertainty in estimates with ordinary and indicator kriging. Comput. Geosci. 2001, 27, 929–937. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Perez-Cabello, F.; Lasanta, T. Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens. Environ. 2008, 112, 3916–3934. [Google Scholar] [CrossRef]
- Krige, D.G. Longterm Trends in Domestic Metal Prices under International Conditions of Differential Inflation Rates and Unstable Currency Exchange-Rates. J. S. Afr. Inst. Min. Metall. 1978, 79, 42–49. [Google Scholar]
- Van der Meer, F. Remote-sensing image analysis and geostatistics. Int. J. Remote Sens. 2012, 33, 5644–5676. [Google Scholar] [CrossRef]
- Srivastava, R.M.; Isaaks, E.H. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; 561p. [Google Scholar]
- Wald, L. Data Fusion: Definitions and Architectures—Fusion of Images of Different Spatial Resolutions; Les Presses, Ecole des Mines de Paris: Paris, France, 2002. [Google Scholar]
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I.J.M. Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Stein, A.; Bastiaanssen, W.G.M.; De Bruin, S.; Cracknell, A.P.; Curran, P.J.; Fabbri, A.G.; Gorte, B.G.H.; Van Groenigen, J.W.; Van der Meer, F.D.; Saldana, A. Integrating spatial statistics and remote sensing. Int. J. Remote Sens. 1998, 19, 1793–1814. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics in soil science: State-of-the-art and perspectives. Geoderma 1999, 89, 1–45. [Google Scholar] [CrossRef]
- Mcbratney, A.B.; Webster, R. Choosing Functions for Semi-Variograms of Soil Properties and Fitting Them to Sampling Estimates. J. Soil Sci. 1986, 37, 617–639. [Google Scholar] [CrossRef]
- Atkinson, P.M. Downscaling in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 106–114. [Google Scholar] [CrossRef]
Method | STARFM | FSDAF | RWSTFM | |
---|---|---|---|---|
RMSE | Band 2 | 0.0026 | 0.0028 | 0.0018 |
Band 3 | 0.0034 | 0.0035 | 0.0026 | |
Band 4 | 0.0078 | 0.0076 | 0.0056 | |
CC | Band 2 | 0.8368 | 0.8331 | 0.8839 |
Band 3 | 0.8083 | 0.8262 | 0.8726 | |
Band 4 | 0.7095 | 0.7603 | 0.8228 | |
AAD | Band 2 | 0.0021 | 0.0023 | 0.0013 |
Band 3 | 0.0027 | 0.0028 | 0.0018 | |
Band 4 | 0.0050 | 0.0056 | 0.0032 | |
AD | Band 2 | −0.0015 | −0.0018 | −0.0003 |
Band 3 | −0.0015 | −0.0020 | −0.0008 | |
Band 4 | −0.0038 | −0.0043 | 0.0006 | |
SSIM | Band 2 | 0.8258 | 0.8102 | 0.8838 |
Band 3 | 0.7984 | 0.8041 | 0.8719 | |
Band 4 | 0.6585 | 0.7285 | 0.8204 | |
ERGAS | 1.4923 | 1.5282 | 1.0814 |
Datasets | The First Dataset | ||
---|---|---|---|
Bands | Band 2 | Band 3 | Band 4 |
Percentage (%) | 81.08 | 83.15 | 85.54 |
Method | STARFM | FSDAF | RWSTFM | |
---|---|---|---|---|
RMSE | Band 2 | 0.0022 | 0.0021 | 0.0016 |
Band 3 | 0.0030 | 0.0029 | 0.0021 | |
Band 4 | 0.0075 | 0.0073 | 0.0056 | |
CC | Band 2 | 0.7635 | 0.7946 | 0.8889 |
Band 3 | 0.8012 | 0.8261 | 0.9025 | |
Band 4 | 0.6921 | 0.7199 | 0.8413 | |
AAD | Band 2 | 0.0016 | 0.0016 | 0.0012 |
Band 3 | 0.0023 | 0.0022 | 0.0016 | |
Band 4 | 0.0053 | 0.0052 | 0.0040 | |
AD | Band 2 | 0.0001 | −0.0003 | −0.0001 |
Band 3 | −0.0003 | −0.0007 | −0.0001 | |
Band 4 | −0.0003 | −0.0009 | −0.0000 | |
SSIM | Band 2 | 0.7579 | 0.7707 | 0.8834 |
Band 3 | 0.7982 | 0.8090 | 0.8973 | |
Band 4 | 0.6598 | 0.6826 | 0.8235 | |
ERGAS | 1.4399 | 1.3708 | 1.0334 |
Datasets | The Second Dataset | ||
---|---|---|---|
Bands | Band 2 | Band 3 | Band 4 |
Percentage (%) | 94.78 | 94.89 | 72.68 |
Method | STARFM | FSDAF | RWSTFM | |
---|---|---|---|---|
RMSE | Band 2 | 0.0032 | 0.0030 | 0.0026 |
Band 3 | 0.0041 | 0.0039 | 0.0035 | |
Band 4 | 0.0065 | 0.0065 | 0.0060 | |
CC | Band 2 | 0.7699 | 0.7964 | 0.8604 |
Band 3 | 0.7482 | 0.7615 | 0.8181 | |
Band 4 | 0.7437 | 0.7249 | 0.7717 | |
AAD | Band 2 | 0.0023 | 0.0022 | 0.0018 |
Band 3 | 0.0028 | 0.0027 | 0.0025 | |
Band 4 | 0.0045 | 0.0049 | 0.0044 | |
AD | Band 2 | 0.0002 | 0.0000 | 0.0000 |
Band 3 | 0.0003 | 0.0000 | 0.0000 | |
Band 4 | 0.0014 | 0.0002 | 0.0000 | |
SSIM | Band 2 | 0.7584 | 0.7807 | 0.8582 |
Band 3 | 0.7422 | 0.7483 | 0.8172 | |
Band 4 | 0.7393 | 0.7202 | 0.7688 | |
ERGAS | 1.7734 | 1.8159 | 1.5449 |
Datasets | The Third Dataset | ||
---|---|---|---|
Bands | Band 2 | Band 3 | Band 4 |
Percentage (%) | 84.79 | 85.31 | 85.11 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huang, B. A Rigorously-Weighted Spatiotemporal Fusion Model with Uncertainty Analysis. Remote Sens. 2017, 9, 990. https://doi.org/10.3390/rs9100990
Wang J, Huang B. A Rigorously-Weighted Spatiotemporal Fusion Model with Uncertainty Analysis. Remote Sensing. 2017; 9(10):990. https://doi.org/10.3390/rs9100990
Chicago/Turabian StyleWang, Jing, and Bo Huang. 2017. "A Rigorously-Weighted Spatiotemporal Fusion Model with Uncertainty Analysis" Remote Sensing 9, no. 10: 990. https://doi.org/10.3390/rs9100990
APA StyleWang, J., & Huang, B. (2017). A Rigorously-Weighted Spatiotemporal Fusion Model with Uncertainty Analysis. Remote Sensing, 9(10), 990. https://doi.org/10.3390/rs9100990